Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
Univ. Grenoble Alpes, CNRS, SIMAP, 38000 Grenoble, France.
Acta Biomater. 2018 Jun;73:500-508. doi: 10.1016/j.actbio.2018.04.004. Epub 2018 Apr 9.
The nanoscale characteristics of the mineral phase in bone tissue such as nanocrystal size, organization, structure and composition have been identified as potential markers of bone quality. However, such characterization remains challenging since it requires combining structural analysis and imaging modalities with nanoscale precision. In this paper, we report the first application of automated crystal orientation mapping using transmission electron microscopy (ACOM-TEM) to the structural analysis of bone mineral at the individual nanocrystal level. By controlling the nanocrystal growth of a cortical bovine bone model artificially heated up to 1000 °C, we highlight the potential of this technique. We thus show that the combination of sample mapping by scanning and the crystallographic information derived from the collected electron diffraction patterns provides a more rigorous analysis of the mineral nanostructure than standard TEM. In particular, we demonstrate that nanocrystal orientation maps yield valuable information for dimensional analysis. Furthermore, we show that ACOM-TEM has sufficient sensitivity to distinguish between phases with close crystal structures and we address unresolved questions regarding the existence of a hexagonal to monoclinic phase transition induced by heating. This first study therefore opens new perspectives in bone characterization at the nanoscale, a daunting challenge in the biomedical and archaeological fields, which could also prove particularly useful to study the mineral characteristics of tissue grown at the interface with biomaterials implants.
In this paper, we propose a new approach to assess the mineral properties of bone at the individual nanocrystal level, a major challenge for decades. We use a modified Transmission Electron Microscopy acquisition mode to perform an Automated Crystal Orientation Mapping (ACOM-TEM) by analyzing electron diffraction patterns. We tune the mineral nanocrystal size by heating a model bovine bone system and show that this method allows precisely assessing the mineral nanocrystal size, orientation and crystallographic phase. ACOM-TEM therefore has sufficient sensitivity to solve problems that couldn't be answered using X-ray diffraction. We thus revisit the fine mechanisms of bone nanocrystal growth upon heating, a process currently used for bone graft manufacturing, also of practical interest for forensic science and archaeology.
骨组织中矿物质的纳米级特征,如纳米晶尺寸、组织、结构和组成,已被确定为骨质量的潜在标志物。然而,这种特性的描述仍然具有挑战性,因为它需要将结构分析和成像模式与纳米级精度相结合。在本文中,我们报告了首次将使用透射电子显微镜(TEM)的自动晶体取向映射(ACOM-TEM)应用于个体纳米晶水平的骨矿物质结构分析。通过控制人工加热至 1000°C 的皮质牛骨模型的纳米晶生长,我们突出了该技术的潜力。因此,我们表明,通过扫描进行的样品映射与从收集的电子衍射图案中获得的晶体学信息相结合,为矿物质纳米结构的分析提供了更严格的方法。特别是,我们证明纳米晶取向图为尺寸分析提供了有价值的信息。此外,我们表明,ACOM-TEM 具有足够的灵敏度来区分具有相近晶体结构的相,并且我们解决了关于加热引起的六方到单斜相转变是否存在的未解决的问题。因此,这项首次研究为在纳米尺度上进行骨特性研究开辟了新的前景,这是生物医学和考古领域的一项艰巨挑战,对于研究与生物材料植入物界面处生长的组织的矿物质特性也可能特别有用。
在本文中,我们提出了一种新的方法来评估个体纳米晶水平的骨矿物质特性,这是几十年来的主要挑战。我们使用改进的透射电子显微镜采集模式通过分析电子衍射图案来执行自动晶体取向映射(ACOM-TEM)。我们通过加热模型牛骨系统来调整矿物质纳米晶的尺寸,并表明该方法可以精确评估矿物质纳米晶的尺寸、取向和晶体相。因此,ACOM-TEM 具有足够的灵敏度来解决使用 X 射线衍射无法回答的问题。因此,我们重新审视了加热过程中骨纳米晶生长的精细机制,这一过程目前用于骨移植物制造,对于法医学和考古学也具有实际意义。