Suppr超能文献

使用整形外科模拟器识别预测新手手术表现的新工具。

Identification of New Tools to Predict Surgical Performance of Novices using a Plastic Surgery Simulator.

机构信息

Division of Plastic & Reconstructive Surgery, Department of Experimental Surgery, McGill University, Montreal, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, McGill University, Montreal, Canada.

Division of Plastic & Reconstructive Surgery, Department of Experimental Surgery, McGill University, Montreal, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, McGill University, Montreal, Canada.

出版信息

J Surg Educ. 2018 Nov;75(6):1650-1657. doi: 10.1016/j.jsurg.2018.03.008. Epub 2018 Apr 9.

Abstract

OBJECTIVE

To identify new tools capable of predicting surgical performance of novices on an augmentation mammoplasty simulator. The pace of technical skills acquisition varies between residents and may necessitate more time than that allotted by residency training before reaching competence. Identifying applicants with superior innate technical abilities might shorten learning curves and the time to reach competence. The objective of this study is to identify new tools that could predict surgical performance of novices on a mammoplasty simulator.

METHOD

We recruited 14 medical students and recorded their performance in 2 skill-games: Mikado and Perplexus Epic, and in 2 video games: Star War Racer (Sony Playstation 3) and Super Monkey Ball 2 (Nintendo Wii). Then, each participant performed an augmentation mammoplasty procedure on a Mammoplasty Part-task Trainer, which allows the simulation of the essential steps of the procedure.

RESULTS

The average age of participants was 25.4 years. Correlation studies showed significant association between Perplexus Epic, Star Wars Racer, Super Monkey Ball scores and the modified OSATS score with r = 0.8491 (p < 0.001), r = -0.6941 (p = 0.005), and r = 0.7309 (p < 0.003), but not with the Mikado score r = -0.0255 (p = 0.9). Linear regressions were strongest for Perplexus Epic and Super Monkey Ball scores with coefficients of determination of 0.59 and 0.55, respectively. A combined score (Perplexus/Super-Monkey-Ball) was computed and showed a significant correlation with the modified OSATS score having an r = 0.8107 (p < 0.001) and R = 0.75, respectively.

CONCLUSIONS

This study identified a combination of skill games that correlated to better performance of novices on a surgical simulator. With refinement, such tools could serve to help screen plastic surgery applicants and identify those with higher surgical performance predictors.

摘要

目的

寻找能够预测新手在隆乳术模拟器上手术表现的新工具。技术技能的掌握速度在住院医师之间存在差异,可能需要比住院医师培训规定的时间更长,才能达到熟练程度。识别具有卓越先天技术能力的申请人可能会缩短学习曲线并缩短达到熟练程度的时间。本研究的目的是寻找能够预测新手在隆乳术模拟器上手术表现的新工具。

方法

我们招募了 14 名医学生,并记录了他们在 2 项技能游戏(Mikado 和 Perplexus Epic)和 2 项视频游戏(Star War Racer(Sony PlayStation 3)和 Super Monkey Ball 2(Nintendo Wii)中的表现。然后,每位参与者都在 Mammoplasty Part-task Trainer 上进行了隆乳术程序,该模拟器可以模拟该程序的基本步骤。

结果

参与者的平均年龄为 25.4 岁。相关性研究显示,Perplexus Epic、Star Wars Racer 和 Super Monkey Ball 的得分与改良 OSATS 评分之间存在显著相关性,r = 0.8491(p < 0.001),r = -0.6941(p = 0.005)和 r = 0.7309(p < 0.003),但与 Mikado 评分 r = -0.0255(p = 0.9)无关。Perplexus Epic 和 Super Monkey Ball 得分的线性回归最强,决定系数分别为 0.59 和 0.55。计算了一个组合分数(Perplexus/Super-Monkey-Ball),并显示与改良 OSATS 评分有显著相关性,r = 0.8107(p < 0.001),R = 0.75。

结论

本研究确定了一组技能游戏,可以更好地预测新手在手术模拟器上的表现。经过改进,这些工具可以帮助筛选整形外科申请人,并识别出具有更高手术表现预测能力的申请人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验