Suppr超能文献

使用通用数据元素推荐和提取小儿多发性硬化症的临床变量

Recommendations and Extraction of Clinical Variables of Pediatric Multiple Sclerosis Using Common Data Elements.

作者信息

Newland Pamela, Newland John M, Hendricks-Ferguson Verna L, Smith Judith M, Oliver Brant J

机构信息

Questions or comments about this article may be directed to Pamela Newland, PhD RN CMSRN, at

出版信息

J Neurosci Nurs. 2018 Jun;50(3):171-176. doi: 10.1097/JNN.0000000000000368.

Abstract

PURPOSE

The purpose of this article was to demonstrate the feasibility of using common data elements (CDEs) to search for information on the pediatric patient with multiple sclerosis (MS) and provide recommendations for future quality improvement and research in the use of CDEs for pediatric MS symptom management strategies Methods: The St. Louis Children's Hospital (SLCH), Washington University (WU) pediatrics data network was evaluated for use of CDEs identified from a database to identify variables in pediatric MS, including the key clinical features from the disease course of MS. The algorithms used were based on International Classification of Diseases, Ninth/Tenth Revision, codes and text keywords to identify pediatric patients with MS from a de-identified database. Data from a coordinating center of SLCH/WU pediatrics data network, which houses inpatient and outpatient records consisting of patients (N = 498 000), were identified, and detailed information regarding the clinical course of MS were located from the text of the medical records, including medications, presence of oligoclonal bands, year of diagnosis, and diagnosis code.

RESULTS

There were 466 pediatric patients with MS, with a few also having the comorbid diagnosis of anxiety and depression.

CONCLUSIONS

St. Louis Children's Hospital/WU pediatrics data network is one of the largest databases in the United States of detailed data, with the ability to query and validate clinical data for research on MS. Nurses and other healthcare professionals working with pediatric MS patients will benefit from having common disease identifiers for quality improvement, research, and practice. The increased knowledge of big data from SLCH/WU pediatrics data network has the potential to provide information for intervention and decision-making that can be personalized to the pediatric MS patient.

摘要

目的

本文旨在证明使用通用数据元素(CDEs)搜索多发性硬化症(MS)儿科患者信息的可行性,并为未来在使用CDEs进行儿科MS症状管理策略方面的质量改进和研究提供建议。方法:对圣路易斯儿童医院(SLCH)、华盛顿大学(WU)儿科数据网络进行评估,以确定从数据库中识别出的CDEs在儿科MS中的使用情况,包括MS病程中的关键临床特征。所使用的算法基于《国际疾病分类》第九/十版编码和文本关键词,从一个去识别化数据库中识别患有MS的儿科患者。从SLCH/WU儿科数据网络协调中心获取数据,该中心保存了包括患者(N = 498000)的住院和门诊记录,并从病历文本中找到有关MS临床病程的详细信息,包括用药情况、寡克隆带的存在、诊断年份和诊断编码。

结果

有466名患有MS的儿科患者,其中少数还伴有焦虑和抑郁的合并诊断。

结论

圣路易斯儿童医院/WU儿科数据网络是美国最大的详细数据数据库之一,有能力查询和验证用于MS研究的临床数据。照顾儿科MS患者的护士和其他医疗保健专业人员将受益于拥有通用疾病标识符,以促进质量改进、研究和实践。从SLCH/WU儿科数据网络中增加的大数据知识有可能为干预和决策提供信息,这些信息可以针对儿科MS患者进行个性化定制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验