Jaypee Institute of Information Technology, Noida 201307, India.
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
J Theor Biol. 2018 Jul 14;449:14-22. doi: 10.1016/j.jtbi.2018.04.016. Epub 2018 Apr 11.
Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and α-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1.
Tank binding kinase 1 (TBK-1) 在免疫、炎症、自噬、细胞生长和增殖中发挥着重要作用。然而,TBK-1 磷酸化和激活的关键分子和结构细节在很大程度上尚不清楚。在这里,我们研究了人 TBK-1 磷酸化(活性)和非磷酸化(非活性)形式的能量景观,以表征磷酸化和局部失配之间的相互作用。通过使用配备能量函数的算法,并在 Frustratometer 网络服务器(http://www.frustratometer.tk)中实现,我们量化了失配在 TBK-1 激活中的作用。因此,观察到在磷酸化调节的活性和非活性 TBK-1 中构象变化。在不同形式的 TBK-1 中观察到失配、灵活性和原子间运动的显著变化。结构刚性的激酶结构域构成催化结构域核心中最小失配的枢纽,而 C 结构域中高度失配的簇可能在激活过程中允许构象转变。此外,在 TBK-1 的 SDD 结构域中发现了一个涉及蛋白质-蛋白质相互作用和二聚化的高度失配相互作用的大网络。激酶结构域的激活环和α-C 螺旋的接触图在磷酸化后显示出显著变化。互相关分析表明,TBK-1 的磷酸化增加了内和亚基相关运动。磷酸化因此在长程接触中引入了微妙的变化,这可能导致 TBK-1 的显著构象变化。