Suppr超能文献

高速公路二次事故识别、建模和预防的方法学演变及前沿。

Methodological evolution and frontiers of identifying, modeling and preventing secondary crashes on highways.

机构信息

Department of Modeling, Simulation & Visualization Engineering, Old Dominion University, 4700 Elkhorn Ave, Norfolk, VA 23529, USA.

Department of Civil and Natural Resources Engineering, University of Canterbury 20 Kirkwood Ave, Christchurch, 8041, New Zealand.

出版信息

Accid Anal Prev. 2018 Aug;117:40-54. doi: 10.1016/j.aap.2018.04.001. Epub 2018 Apr 10.

Abstract

Secondary crashes (SCs) or crashes that occur within the boundaries of the impact area of prior, primary crashes are one of the incident types that frequently affect highway traffic operations and safety. Existing studies have made great efforts to explore the underlying mechanisms of SCs and relevant methodologies have been evolving over the last two decades concerning the identification, modeling, and prevention of these crashes. So far there is a lack of a detailed examination on the progress, lessons, and potential opportunities regarding existing achievements in SC-related studies. This paper provides a comprehensive investigation of the state-of-the-art approaches; examines their strengths and weaknesses; and provides guidance in exploiting new directions in SC-related research. It aims to support researchers and practitioners in understanding well-established approaches so as to further explore the frontiers. Published studies focused on SCs since 1997 have been identified, reviewed, and summarized. Key issues concentrated on the following aspects are discussed: (i) static/dynamic approaches to identify SCs; (ii) parametric/non-parametric models to analyze SC risk, and (iii) deployable countermeasures to prevent SCs. Based on the examined issues, needs, and challenges, this paper further provides insights into potential opportunities such as: (a) fusing data from multiple sources for SC identification, (b) using advanced learning algorithms for real-time SC analysis, and (c) deploying connected vehicles for SC prevention in future research. This paper contributes to the research community by providing a one-stop reference for research on secondary crashes.

摘要

二次碰撞(SCs)或发生在先前的原发性碰撞撞击区域范围内的碰撞是经常影响公路交通运行和安全的事故类型之一。现有研究已经在努力探索SCs 的潜在机制,并且在过去二十年中,关于这些碰撞的识别、建模和预防的相关方法一直在不断发展。到目前为止,对于与 SC 相关的研究中现有成果的进展、经验教训和潜在机会缺乏详细的审查。本文对最新方法进行了全面调查;检查了它们的优缺点;并为 SC 相关研究的新方向提供了指导。它旨在为研究人员和从业人员提供支持,帮助他们了解成熟的方法,以进一步探索前沿领域。自 1997 年以来,针对 SC 问题的研究已经被识别、审查和总结。集中讨论的关键问题包括:(i)识别 SC 的静态/动态方法;(ii)分析 SC 风险的参数/非参数模型;(iii)可部署的预防 SC 的措施。基于检查的问题、需求和挑战,本文进一步探讨了未来研究中潜在的机会,例如:(a)融合来自多个来源的数据进行 SC 识别;(b)使用先进的学习算法进行实时 SC 分析;(c)部署联网车辆预防 SC。本文通过为二次碰撞研究提供一站式参考,为研究界做出了贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验