School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong.
Epigenetics Chromatin. 2018 Apr 13;11(1):16. doi: 10.1186/s13072-018-0185-1.
The centromere is the specialized chromatin region that directs chromosome segregation. The kinetochore assembles on the centromere, attaching chromosomes to microtubules in mitosis. The centromere position is usually maintained through cell cycles and generations. However, new centromeres, known as neocentromeres, can occasionally form on ectopic regions when the original centromere is inactivated or lost due to chromosomal rearrangements. Centromere repositioning can occur during evolution. Moreover, de novo centromeres can form on exogenously transformed DNA in human cells at a low frequency, which then segregates faithfully as human artificial chromosomes (HACs). How centromeres are maintained, inactivated and activated is unclear. A conserved histone H3 variant, CENP-A, epigenetically marks functional centromeres, interspersing with H3. Several histone modifications enriched at centromeres are required for centromere function, but their role in new centromere formation is less clear. Studying the mechanism of new centromere formation has been challenging because these events are difficult to detect immediately, requiring weeks for HAC selection.
DNA injected into the Caenorhabditis elegans gonad can concatemerize to form artificial chromosomes (ACs) in embryos, which first undergo passive inheritance, but soon autonomously segregate within a few cell cycles, more rapidly and frequently than HACs. Using this in vivo model, we injected LacO repeats DNA, visualized ACs by expressing GFP::LacI, and monitored equal AC segregation in real time, which represents functional centromere formation. Histone H3K9 and H4 acetylations are enriched on new ACs when compared to endogenous chromosomes. By fusing histone deacetylase HDA-1 to GFP::LacI, we tethered HDA-1 to ACs specifically, reducing AC histone acetylations, reducing AC equal segregation frequency, and reducing initial kinetochroe protein CENP-A and NDC-80 deposition, indicating that histone acetylations facilitate efficient centromere establishment. Similarly, inhibition of RNA polymerase II-mediated transcription also delays initial CENP-A loading.
Acetylated histones on chromatin and transcription can create an open chromatin environment, enhancing nucleosome disassembly and assembly, and potentially contribute to centromere establishment. Alternatively, acetylation of soluble H4 may stimulate the initial deposition of CENP-A-H4 nucleosomes. Our findings shed light on the mechanism of de novo centromere activation.
着丝粒是指导染色体分离的特化染色质区域。动粒在着丝粒上组装,将染色体与有丝分裂中的微管连接。着丝粒的位置通常在细胞周期和世代中得以维持。然而,当原始着丝粒因染色体重排而失活或丢失时,新的着丝粒,即新着丝粒,偶尔会在异位区域形成。着丝粒的重定位可以在进化过程中发生。此外,在人类细胞中,外源转化的 DNA 可以以低频率形成新的着丝粒,这些着丝粒随后作为人类人工染色体(HAC)忠实地分离。着丝粒如何维持、失活和激活尚不清楚。一种保守的组蛋白 H3 变体 CENP-A 在外层标记功能性着丝粒,与 H3 交错。在着丝粒处富集的几种组蛋白修饰对于着丝粒功能是必需的,但它们在新着丝粒形成中的作用尚不清楚。由于这些事件难以立即检测到,需要数周时间才能选择 HAC,因此研究新着丝粒形成的机制一直具有挑战性。
注入秀丽隐杆线虫性腺的 DNA 可以在胚胎中串联形成人工染色体(AC),这些 AC 最初经历被动遗传,但很快就在几个细胞周期内自主分离,速度比 HAC 更快、更频繁。利用这种体内模型,我们注射了 LacO 重复 DNA,通过表达 GFP::LacI 来可视化 AC,并实时监测 AC 的均等分离,这代表着功能性着丝粒的形成。与内源性染色体相比,新的 AC 上富含组蛋白 H3K9 和 H4 的乙酰化。通过将组蛋白去乙酰化酶 HDA-1 融合到 GFP::LacI 上,我们将 HDA-1 特异性地固定在 AC 上,降低了 AC 的组蛋白乙酰化水平,降低了 AC 的均等分离频率,降低了初始动粒蛋白 CENP-A 和 NDC-80 的沉积,表明组蛋白乙酰化有助于高效建立着丝粒。同样,抑制 RNA 聚合酶 II 介导的转录也会延迟初始 CENP-A 的加载。
染色质上的乙酰化组蛋白和转录可以产生开放的染色质环境,增强核小体的解组装和组装,并可能有助于着丝粒的建立。或者,可溶性 H4 的乙酰化可能会刺激 CENP-A-H4 核小体的初始沉积。我们的发现揭示了新着丝粒激活的机制。