Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA.
Brain Struct Funct. 2018 Jul;223(6):2809-2821. doi: 10.1007/s00429-018-1662-9. Epub 2018 Apr 13.
The frontal cortico-basal ganglia network plays a central role in action selection, associative learning, and motivation, processes requiring the integration of information from functionally distinct cortical regions. The cortico-striatal projection is a likely substrate of information integration, as terminal fields from different cortical regions converge in the striatum. These intersecting projections form complex zones of unique cortical inputs. Here, our goal was to follow these projection zones downstream in the basal ganglia to the globus pallidus. We combined a sizable database of 3D models of striato-pallidal chartings in macaques with maps of frontal cortical inputs to determine the topography of the striato-pallidal projection and the indirect cortical influence over the pallidum. We found that the striato-pallidal projection is highly topographic, with the location of the striatal injection site strongly predicting the location of the resulting pallidal terminal fields. Furthermore, striato-pallidal projections are specific and largely nonoverlapping. Thus, striatal hubs receiving unique combinations of cortical inputs have distinct projections to the pallidum. However, because of the strong convergence of cortical terminal fields in the striatum, the indirect pallidal representation of any given frontal cortical region remains broad. We illustrate this arrangement by contrasting the pallidal projections from two nearby striatal cases: one a putative hub for cortical attentional bias signals, and the other with a different, more ventral set of cortical inputs. Thus, the striato-pallidal projection faithfully conveys unique combinations of cortical inputs to different locations within the pallidum via the striatum.
额皮质-基底节网络在动作选择、联想学习和动机等过程中发挥着核心作用,这些过程需要整合来自功能不同的皮质区域的信息。皮质-纹状体投射可能是信息整合的基础,因为来自不同皮质区域的终末场在纹状体中汇聚。这些相交的投射形成了独特皮质输入的复杂区域。在这里,我们的目标是沿着基底节下游追踪这些投射区域到苍白球。我们结合了大量猕猴纹状-苍白球图表的 3D 模型数据库和额皮质输入图,以确定纹状-苍白球投射的拓扑结构以及皮质对苍白球的间接影响。我们发现纹状-苍白球投射具有高度的拓扑结构,纹状体注射部位的位置强烈预测了苍白球终末场的位置。此外,纹状-苍白球投射是特异的,且在很大程度上不重叠。因此,接收独特皮质输入组合的纹状体中枢对苍白球有独特的投射。然而,由于皮质终末场在纹状体中的强烈汇聚,任何特定额皮质区域的间接苍白球表示仍然很广泛。我们通过对比两个附近纹状体病例的苍白球投射来说明这种排列方式:一个是皮质注意力偏向信号的假定中枢,另一个则有不同的、更腹侧的皮质输入。因此,纹状-苍白球投射通过纹状体忠实地将皮质输入的独特组合传递到苍白球的不同位置。