Suppr超能文献

高效非晶态 Mn-MIL-100 催化剂的简便合成:在 CO 氧化反应中的应用过程中的形成机制和结构变化。

Facile Synthesis of Highly Efficient Amorphous Mn-MIL-100 Catalysts: Formation Mechanism and Structure Changes during Application in CO Oxidation.

机构信息

School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, P.R. China.

School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai, 200093, P.R. China.

出版信息

Chemistry. 2018 Jun 21;24(35):8822-8832. doi: 10.1002/chem.201800773. Epub 2018 May 30.

Abstract

A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts for CO oxidation. This study focused on explaining the crystalline-amorphous-crystalline transformations during thermolysis of Mn-MIL-100 and studying the structure changes during the CO oxidation reaction. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250 °C (a-Mn-250) showed a smaller specific surface area (4 m  g ) but high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction. When a-Mn-250 was treated with reaction atmosphere at high temperature (giving used-a-Mn-250-S), the amorphous catalysts transformed into Mn O . Meanwhile, the BET surface area (164 m  g ) and catalytic performance both sharply increased. In addition, used-a-Mn-250-S catalyst transformed from Mn O into Mn O , and this resulted in a slight decrease of catalytic activity in the presence of 1 vol % water vapor in the feed stream. A schematic mechanism of the structure changes during the reaction process was proposed. The success of the synthesis relies on the increase in BET surface area by using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a large quantity of surface active oxygen species, oxygen vacancies, and good low-temperature reduction behavior.

摘要

我们对非晶态金属有机骨架 Mn-MIL-100 作为 CO 氧化的高效催化剂进行了全面研究。本研究重点解释了 Mn-MIL-100 热解过程中的晶态-非晶态-晶态转变,并研究了 CO 氧化反应过程中的结构变化。提出了非晶态 Mn-MIL-100 的可能形成机制。在 250°C 下煅烧得到的非晶态 Mn-MIL-100(a-Mn-250)具有较小的比表面积(4 m g ),但具有较高的催化活性。此外,非晶态 Mn-MIL-100 的结构在反应过程中不稳定。当 a-Mn-250 在高温下与反应气氛接触时(得到使用过的-a-Mn-250-S),非晶态催化剂转化为 MnO。同时,BET 比表面积(164 m g )和催化性能都急剧增加。此外,用过的-a-Mn-250-S 催化剂从 MnO 转化为 MnO ,这导致在进料流中存在 1vol%水蒸气时催化活性略有下降。提出了反应过程中结构变化的示意图机制。合成的成功依赖于使用 CO 作为再处理气氛增加 BET 比表面积,而增强的催化活性归因于独特的结构、大量的表面活性氧物种、氧空位和良好的低温还原行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验