College of Physics and Information Engineering, Fuzhou University, Fuzhou, China.
Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
J Biophotonics. 2018 Sep;11(9):e201800020. doi: 10.1002/jbio.201800020. Epub 2018 Jun 19.
In fluctuation-based optical nanoscopy, investigating high-density labeled subcellular structures with high fidelity has been a significant challenge. In this study, based on super-resolution radial fluctuation (SRRF) microscopy, the joint tagging (JT) strategy is employed to enable fast high-density nanoscopic imaging and tracking. In fixed cell experiment, multiple types of quantum dots with distinguishable fluorescence spectra are jointly tagged to subcellular microtubules. In each spectral channel, the decrease in labeling density guarantees the high-fidelity super-resolution reconstruction using SRRF microscopy. Subsequently, the combination of all spectral channels achieves high-density super-resolution imaging of subcellular microtubules with a resolution of ~62 nm using JT assisted SRRF technique. In the live-cell experiment, 3-channel JT is utilized to track the dynamic motions of high-density toxin-induced lipid clusters for 1 minute, achieving the simultaneous tracking of many individual toxin-induced lipid clusters spatially distributed significantly below the optical diffraction limit in living cells.
在基于波动的光学纳米显微镜中,以高保真度研究高密度标记的亚细胞结构是一项重大挑战。在这项研究中,基于超分辨率径向波动(SRRF)显微镜,采用联合标记(JT)策略来实现快速高密度纳米级成像和跟踪。在固定细胞实验中,将多种具有可区分荧光光谱的量子点联合标记到亚细胞微管上。在每个光谱通道中,通过降低标记密度,保证了使用 SRRF 显微镜进行高保真度超分辨率重建。随后,使用 JT 辅助的 SRRF 技术,将所有光谱通道组合起来,实现了亚细胞微管的高密度超分辨率成像,分辨率约为 62nm。在活细胞实验中,使用 3 通道 JT 来跟踪高密度毒素诱导的脂质簇的动态运动 1 分钟,实现了许多单独的毒素诱导的脂质簇的同时跟踪,这些脂质簇在活细胞中的空间分布显著低于光学衍射极限。