Suppr超能文献

通过数据驱动的统计分析推进系统免疫学。

Advancing systems immunology through data-driven statistical analysis.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.

出版信息

Curr Opin Biotechnol. 2018 Aug;52:109-115. doi: 10.1016/j.copbio.2018.03.009. Epub 2018 Apr 12.

Abstract

Systems biology provides an effective approach to decipher, predict, and ultimately manipulate the complex and inter-connected networks that regulate the immune system. Advances in high-throughput, multiplexed experimental techniques have increased the availability of proteomic and transcriptomic immunological datasets, and as a result, have also accelerated the development of new data-driven computational algorithms to extract biological insight from these data. This review highlights how data-driven statistical models have been used to characterize immune cell subsets and their functions, to map the signaling and intercellular networks that regulate immune responses, and to connect immune cell states to disease outcomes to generate hypotheses for novel therapeutic strategies. We focus on recent advances in evaluating immune cell responses following viral infection and in the tumor microenvironment, which hold promise for improving vaccines, antiviral and cancer immunotherapy.

摘要

系统生物学为破译、预测和最终操纵调节免疫系统的复杂和相互关联的网络提供了一种有效的方法。高通量、多重实验技术的进步增加了蛋白质组学和转录组学免疫学数据集的可用性,因此也加速了新的数据驱动计算算法的发展,以便从这些数据中提取生物学见解。这篇综述强调了数据驱动的统计模型如何用于描述免疫细胞亚群及其功能,用于绘制调节免疫反应的信号和细胞间网络,以及将免疫细胞状态与疾病结果联系起来,以生成新的治疗策略的假设。我们专注于评估病毒感染后和肿瘤微环境中免疫细胞反应的最新进展,这有望改善疫苗、抗病毒和癌症免疫疗法。

相似文献

1
Advancing systems immunology through data-driven statistical analysis.
Curr Opin Biotechnol. 2018 Aug;52:109-115. doi: 10.1016/j.copbio.2018.03.009. Epub 2018 Apr 12.
2
ImmunoGlobe: enabling systems immunology with a manually curated intercellular immune interaction network.
BMC Bioinformatics. 2020 Aug 10;21(1):346. doi: 10.1186/s12859-020-03702-3.
3
Systems biology in immunology: a computational modeling perspective.
Annu Rev Immunol. 2011;29:527-85. doi: 10.1146/annurev-immunol-030409-101317.
4
Solving Immunology?
Trends Immunol. 2017 Feb;38(2):116-127. doi: 10.1016/j.it.2016.11.006. Epub 2016 Dec 13.
6
Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy.
Front Immunol. 2020 Oct 22;11:582744. doi: 10.3389/fimmu.2020.582744. eCollection 2020.
7
Tumor-induced perturbations of cytokines and immune cell networks.
Biochim Biophys Acta. 2014 Apr;1845(2):182-201. doi: 10.1016/j.bbcan.2014.01.004. Epub 2014 Jan 17.
8
Interactive Big Data Resource to Elucidate Human Immune Pathways and Diseases.
Immunity. 2015 Sep 15;43(3):605-14. doi: 10.1016/j.immuni.2015.08.014. Epub 2015 Sep 8.
9
Cancer systems immunology.
Elife. 2020 Jul 13;9:e53839. doi: 10.7554/eLife.53839.
10
What Can Immunologists Learn from Systems Approaches?
Trends Immunol. 2018 Mar;39(3):163-166. doi: 10.1016/j.it.2018.01.002. Epub 2018 Feb 21.

引用本文的文献

1
A curated multivariate approach to study efficacy and optimisation of a prototype vaccine against teladorsagiasis in sheep.
Vet Res Commun. 2024 Feb;48(1):367-379. doi: 10.1007/s11259-023-10208-9. Epub 2023 Sep 14.
2
Genetic epidemiology of resistance to M. tuberculosis Infection: importance of study design and recent findings.
Genes Immun. 2023 Jun;24(3):117-123. doi: 10.1038/s41435-023-00204-z. Epub 2023 Apr 22.
3
SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery.
J Immunother Cancer. 2020 Dec;8(2). doi: 10.1136/jitc-2020-000705.
4
Towards a Systems Immunology Approach to Unravel Responses to Cancer Immunotherapy.
Front Immunol. 2020 Oct 22;11:582744. doi: 10.3389/fimmu.2020.582744. eCollection 2020.
5
Current Challenges in Vaccinology.
Front Immunol. 2020 Jun 25;11:1181. doi: 10.3389/fimmu.2020.01181. eCollection 2020.

本文引用的文献

1
Exploring single-cell data with deep multitasking neural networks.
Nat Methods. 2019 Nov;16(11):1139-1145. doi: 10.1038/s41592-019-0576-7. Epub 2019 Oct 7.
2
Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity.
J Exp Med. 2018 Mar 5;215(3):877-893. doi: 10.1084/jem.20171435. Epub 2018 Feb 7.
3
High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy.
Nat Med. 2018 Feb;24(2):144-153. doi: 10.1038/nm.4466. Epub 2018 Jan 8.
4
Robust control of the adaptive immune system.
Semin Immunol. 2018 Apr;36:17-27. doi: 10.1016/j.smim.2017.12.009. Epub 2017 Dec 29.
6
Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.
Cell. 2017 Sep 7;170(6):1120-1133.e17. doi: 10.1016/j.cell.2017.07.024. Epub 2017 Aug 10.
7
Single-cell RNA sequencing to explore immune cell heterogeneity.
Nat Rev Immunol. 2018 Jan;18(1):35-45. doi: 10.1038/nri.2017.76. Epub 2017 Aug 7.
8
Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in Tissue CD4+ T Cells.
Cell Rep. 2017 Jul 25;20(4):984-998. doi: 10.1016/j.celrep.2017.06.087.
10
Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging.
Front Immunol. 2017 Jun 14;8:692. doi: 10.3389/fimmu.2017.00692. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验