Suppr超能文献

原位生成的金属有机框架内的多孔铂镍纳米线用于高化学选择性肉桂醛加氢反应

Porous Pt-Ni Nanowires within In Situ Generated Metal-Organic Frameworks for Highly Chemoselective Cinnamaldehyde Hydrogenation.

作者信息

Zhang Nan, Shao Qi, Wang Pengtang, Zhu Xing, Huang Xiaoqing

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China.

Testing & Analysis Center, Soochow University, Jiangsu, 215123, China.

出版信息

Small. 2018 May;14(19):e1704318. doi: 10.1002/smll.201704318. Epub 2018 Apr 15.

Abstract

Although chemoselective hydrogenation of unsaturated aldehydes is the major route to highly valuable industrially demanded unsaturated alcohols, it is still challenging, as the production of saturated aldehydes is more favorable over unsaturated alcohols from the view of thermodynamics. By combining the structural features of porous nanowires (NWs) and metal-organic frameworks (MOFs), a unique class of porous Pt-Ni NWs in situ encapsuled by MOFs (Pt-Ni NWs@Ni/Fex-MOFs) is designed to enhance the unsaturated alcohols selectivity in the cinnamaldehyde (CAL) hydrogenation. A detailed catalytic study shows that the porous Pt-Ni NWs@Ni/Fe -MOFs exhibit volcano-type activity and selectivity in CAL hydrogenation as a function of Fe content. The optimized porous PtNi NWs@Ni/Fe -MOF is highly active and selective with 99.5% CAL conversion and 83.3% cinnamyl alcohol selectivity due to the confinement effect, appropriate thickness of MOF and its optimized electronic structure, and excellent durability with negligible activity and selectivity loss after five runs.

摘要

尽管不饱和醛的化学选择性氢化是生产具有高工业价值的不饱和醇的主要途径,但该过程仍具有挑战性,因为从热力学角度来看,生成饱和醛比生成不饱和醇更有利。通过结合多孔纳米线(NWs)和金属有机框架(MOFs)的结构特征,设计了一类独特的由MOF原位封装的多孔Pt-Ni NWs(Pt-Ni NWs@Ni/Fex-MOFs),以提高肉桂醛(CAL)氢化反应中不饱和醇的选择性。详细的催化研究表明,多孔Pt-Ni NWs@Ni/Fe-MOFs在CAL氢化反应中表现出随铁含量变化的火山型活性和选择性。优化后的多孔PtNi NWs@Ni/Fe-MOF具有高活性和选择性,CAL转化率为99.5%,肉桂醇选择性为83.3%,这归因于限域效应、MOF的合适厚度及其优化的电子结构,并且具有出色的耐久性,五次循环后活性和选择性损失可忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验