Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
ChemSusChem. 2020 Jan 9;13(1):205-211. doi: 10.1002/cssc.201902272. Epub 2019 Oct 18.
The development of sustainable catalysts to simultaneously improve activity and selectivity remains a challenge. Herein, it is demonstrated that metal nanoparticles (MNPs) can be encapsulated into a yolk-shell metal-organic framework (MOF) with controllable spatial localization to optimize catalytic performance. When the MNPs are located in the void space between the shell and the core of the MOF, the resulting MNPs@MOF composites show both high catalytic activity and selectivity toward the hydrogenation of α,β-unsaturated aldehydes. In particular, the easily recoverable and stable Pt @MOF(Y) shows an exceptionally high selectivity of 98.2 % for cinnamyl alcohol at a high conversion of 97 %. The excellent performance can be attributed to easy diffusion of the reactants to access highly exposed MNPs in the MOF support, as well as the improved adsorption of the reactant and desorption of the product due to the appropriate metal-support interaction and rich void space between core and shell.
开发同时提高活性和选择性的可持续催化剂仍然是一个挑战。本文证明,金属纳米颗粒(MNPs)可以被包裹在具有可控空间定位的核壳型金属有机骨架(MOF)中,以优化催化性能。当 MNPs 位于 MOF 的壳层和核层之间的空隙中时,得到的 MNPs@MOF 复合材料对α,β-不饱和醛的加氢反应表现出高催化活性和选择性。特别是,易回收和稳定的 Pt@MOF(Y) 在转化率为 97%的情况下,对肉桂醇表现出极高的选择性,达到 98.2%。优异的性能可归因于反应物易于扩散,可进入 MOF 载体中高度暴露的 MNPs,以及由于适当的金属-载体相互作用和核壳之间丰富的空隙空间,反应物的吸附和产物的解吸得到改善。