Suppr超能文献

使用基于群组的轨迹建模来增强中断时间序列分析中的因果推断。

Using group-based trajectory modelling to enhance causal inference in interrupted time series analysis.

作者信息

Linden Ariel

机构信息

Linden Consulting Group, LLC, San Francisco, CA, USA.

出版信息

J Eval Clin Pract. 2018 Jun;24(3):502-507. doi: 10.1111/jep.12934. Epub 2018 Apr 15.

Abstract

RATIONALE, AIMS, AND OBJECTIVES: Several enhancements have been proposed for interrupted time series analysis (ITSA) to improve causal inference. Presently, group-based trajectory modelling (GBTM) is introduced as a complement to ITSA. GBTM assumes a certain number of discrete groups in the sample have unique trajectories of the outcome. GBTM is used herein for 2 purposes: (1) to compare outcomes across all trajectory groups via a stand-alone GBTM and (2) to identify comparable non-treated units to serve as controls in the ITSA outcome model. Examples of each are offered.

METHOD

The effect of California's Proposition 99 (passed in 1988) for reducing cigarette sales is evaluated by comparing California to other states not exposed to smoking reduction initiatives. In the stand-alone GBTM, distinct trajectory groups are identified based on cigarette sales for the entire observation period (1970-2000). In the second approach, a GBTM is generated using only baseline period observations (1970-1988), and treatment effects (difference in post-intervention trends) are then estimated for the treatment unit versus non-treated units in the treated unit's trajectory group.

RESULTS

In the stand-alone GBTM, 3 distinct trajectory groups were identified: low-decreasing, medium-decreasing, and high-decreasing (California and 26 other states were in the low-decreasing group). When using baseline data for matching, California and 19 non-treated states comprised the low group. California had a significantly larger decrease in post-intervention cigarette sales than these controls (P < 0.01).

CONCLUSIONS

GBTM enhances ITSA by providing perspective for the outcome trajectory in the treated unit's group versus all others and can identify non-treated units to be used for estimating treatment effects.

摘要

原理、目的和目标:为改进因果推断,已针对中断时间序列分析(ITSA)提出了若干增强方法。目前,引入了基于组的轨迹建模(GBTM)作为ITSA的补充。GBTM假定样本中的一定数量的离散组具有独特的结果轨迹。本文将GBTM用于两个目的:(1)通过独立的GBTM比较所有轨迹组的结果;(2)识别可比的未处理单元,以在ITSA结果模型中用作对照。并给出了每个目的的示例。

方法

通过将加利福尼亚州与未实施减少吸烟倡议的其他州进行比较,评估加利福尼亚州1988年通过的第99号提案对减少卷烟销售的影响。在独立的GBTM中,根据整个观察期(1970 - 2000年)的卷烟销售情况确定不同的轨迹组。在第二种方法中,仅使用基线期观察值(1970 - 1988年)生成GBTM,然后估计处理单元相对于其轨迹组中的未处理单元的处理效果(干预后趋势差异)。

结果

在独立的GBTM中,识别出3个不同的轨迹组:低下降组、中下降组和高下降组(加利福尼亚州和其他26个州属于低下降组)。当使用基线数据进行匹配时,加利福尼亚州和19个未处理州组成低组。加利福尼亚州干预后的卷烟销售量下降幅度明显大于这些对照州(P < 0.01)。

结论

GBTM通过提供处理单元组与所有其他组的结果轨迹视角来增强ITSA,并且可以识别用于估计处理效果的未处理单元。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验