U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA.
Soft Matter. 2018 May 2;14(17):3344-3360. doi: 10.1039/c7sm02407j.
The apparent molecular weight between crosslinks (Mc,a) in a polymer network plays a fundamental role in the network mechanical response. We systematically varied Mc,a independent of strong noncovalent bonding by using ring-opening metathesis polymerization (ROMP) to co-polymerize dicyclopentadiene (DCPD) with a chain extender that increases Mc,a or a di-functional crosslinker that decreases Mc,a. We compared the ROMP series quasi-static modulus (E), tensile yield stress (σy), and fracture toughness (KIC and GIC) in the glassy regime with literature data for more polar thermosets. ROMP resins showed high KIC (>1.5 MPa m0.5), high GIC (>1000 J m-2), and 4-5 times higher high rate impact resistance than typical polar thermosets with similar Tg values (100 °C to 178 °C). The overall E values were lower for ROMP systems. The σy dependence on Mc,a and T-Tg for ROMP resins was qualitatively similar to more polar thermosets, but the overall σy values were lower. In contrast to more polar thermosets, the KIC and GIC values of the ROMP resins showed strong Mc,a and T-Tg dependence. High rate impact (∼104-105 s-1) trends were similar to the KIC and GIC behavior, but were also correlated to σy. Overall, a ductile failure mode was observed for quasi-static and high rate results for a linear ROMP polymer (Mc,a = 1506 g mol-1 due to chain entanglement), and this gradually transitioned to a fully brittle failure mode for highly crosslinked ROMP polymers (Mc,a ≤ 270 g mol-1). Molecular dynamics (MD) simulations showed that low Mc,a ROMP resins were more likely to form molecular scale nanovoids. The higher chain stiffness in low Mc,a ROMP resins inhibited stress relaxation in the vicinity of these nanovoids, which correlated with brittle mechanical responses. Overall, these differences in mechanical properties were attributed to the weak non-covalent interactions in ROMP resins.
聚合物网络中交联点之间的表观分子量(Mc,a)在网络力学响应中起着基本作用。我们通过开环复分解聚合(ROMP)将二环戊二烯(DCPD)与链扩展剂共聚,独立于强非共价键,系统地改变 Mc,a,或者使用双官能交联剂降低 Mc,a。我们将 ROMP 系列的准静态模量(E)、拉伸屈服应力(σy)和玻璃态下的断裂韧性(KIC 和 GIC)与文献中更极性热固性的数据进行了比较。ROMP 树脂具有高 KIC(>1.5 MPa m0.5)、高 GIC(>1000 J m-2)和比具有相似玻璃化转变温度(100°C 至 178°C)的典型极性热固性树脂高 4-5 倍的高速冲击阻力。ROMP 体系的整体 E 值较低。ROMP 树脂的 σy 对 Mc,a 和 T-Tg 的依赖性与更极性的热固性相似,但整体 σy 值较低。与更极性的热固性树脂不同,ROMP 树脂的 KIC 和 GIC 值对 Mc,a 和 T-Tg 的依赖性很强。高速冲击(约 104-105 s-1)趋势与 KIC 和 GIC 行为相似,但也与 σy 相关。总体而言,线性 ROMP 聚合物(由于链缠结,Mc,a = 1506 g mol-1)的准静态和高速结果表现出韧性失效模式,而对于高度交联的 ROMP 聚合物(Mc,a ≤ 270 g mol-1),这种模式逐渐转变为完全脆性失效模式。分子动力学(MD)模拟表明,低 Mc,a ROMP 树脂更容易形成分子尺度的纳米空穴。低 Mc,a ROMP 树脂中的较高链刚度抑制了这些纳米空穴附近的应力松弛,这与脆性力学响应相关。总体而言,这些机械性能的差异归因于 ROMP 树脂中的弱非共价相互作用。