Molecular Design Institute and Department of Chemistry, New York University , New York, New York 10003-6688, United States.
Acc Chem Res. 2014 Aug 19;47(8):2405-16. doi: 10.1021/ar500128w. Epub 2014 Jun 6.
Owing to the mastery exhibited by Nature in integrating both covalent and noncovalent interactions in a highly efficient manner, the quest to construct polymeric systems that rival not only the precision and fidelity but also the structure of natural systems has remained a daunting challenge. Supramolecular chemists have long endeavored to control the interplay between covalent and noncovalent bond formation, so as to examine and fully comprehend how function is predicated on self-assembly. The ability to reliably control polymer self-assembly is essential to generate "smart" materials and has the potential to tailor polymer properties (i.e., viscosity, electronic properties) through fine-tuning the noncovalent interactions that comprise the polymer architecture. In this context, supramolecular polymers have a distinct advantage over fully covalent systems in that they are dynamically modular, since noncovalent recognition motifs can be engineered to either impart a desired functionality within the overall architecture or provide a designed bias for the self-assembly process. In this Account, we describe engineering principles being developed and pursued by our group that exploit the orthogonal nature of noncovalent interactions, such as hydrogen bonding, metal coordination, and Coulombic interactions, to direct the self-assembly of functionalized macromolecules, resulting in the formation of supramolecular polymers. To begin, we describe our efforts to fabricate a modular poly(norbornene)-based scaffold via ring-opening metathesis polymerization (ROMP), wherein pendant molecular recognition elements based upon nucleobase-mimicking elements (e.g., thymine, diaminotriazine) or SCS-Pd(II) pincer were integrated within covalent monofunctional or symmetrically functionalized polymers. The simple polymer backbones exhibited reliable self-assembly with complementary polymers or small molecules. Within these systems, we applied successful protecting group strategies and template polymerizations to enhance the control afforded by ROMP. Main-chain-functionalized alternating block polymers based upon SCS-Pd(II) pincer-pyridine motifs were achieved through the combined exploitation of bimetallic initiators and supramolecularly functionalized terminators. Our initial design principles led to the successful fabrication of both main-chain- and side-chain-functionalized poly(norbornenes) via ROMP. Utilizing all of these techniques in concert led to engineering orthogonality while achieving complexity through the installation of multiple supramolecular motifs within the side chain, main chain, or both in our polymer systems. The exploitation and modification of design principles based upon functional ROMP initiators and terminators has resulted in the first synthesis of main-chain heterotelechelic polymers that self-assemble into A/B/C supramolecular triblock polymers composed of orthogonal cyanuric acid-Hamilton wedge and SCS-Pd(II) pincer-pyridine motifs. Furthermore, supramolecular A/B/A triblock copolymers were realized through the amalgamation of functionalized monomers, ROMP initiators, and terminators. To date, this ROMP-fabricated system represents the only known method to afford polymer main chains and side chains studded with orthogonal motifs. We end by discussing the impetus to attain functional materials via orthogonal self-assembly. Collectively, our studies suggest that combining covalent and noncovalent bonds in a well-defined and precise manner is an essential design element to achieve complex architectures. The results discussed in this Account illustrate the finesse associated with engineering orthogonal interactions within supramolecular systems and are considered essential steps toward developing complex biomimetic materials with high precision and fidelity.
由于自然界在高效地整合共价和非共价相互作用方面表现出的精湛技艺,构建不仅能与自然系统的精度和保真度相媲美,而且还能与自然系统的结构相媲美的聚合体系一直是一项艰巨的挑战。超分子化学家长期以来一直致力于控制共价和非共价键形成之间的相互作用,以便检验和充分理解功能如何基于自组装。可靠地控制聚合物自组装的能力对于生成“智能”材料至关重要,并且有可能通过微调构成聚合物结构的非共价相互作用来调整聚合物的性质(即粘度、电子性质)。在这种情况下,与完全共价体系相比,超分子聚合物具有明显的优势,因为它们是动态模块,因为可以设计非共价识别基序,以便在整体结构内赋予所需的功能,或者为自组装过程提供设计偏向。在本账目中,我们描述了我们小组正在开发和追求的工程原理,这些原理利用非共价相互作用(如氢键、金属配位和库仑相互作用)的正交性质,指导功能化大分子的自组装,从而形成超分子聚合物。首先,我们描述了我们努力通过开环复分解聚合(ROMP)制造模块化聚(降冰片烯)基支架的情况,其中基于碱基模拟元件(例如胸腺嘧啶、二氨基三嗪)或 SCS-Pd(II) 夹的挂接分子识别元件被整合到共价单官能或对称官能化聚合物中。简单的聚合物主链与互补聚合物或小分子表现出可靠的自组装。在这些系统中,我们应用了成功的保护基团策略和模板聚合来增强 ROMP 提供的控制。基于 SCS-Pd(II) 夹-吡啶基序的主链功能化交替嵌段聚合物是通过利用双金属引发剂和超分子功能化封端剂的组合来实现的。我们的初始设计原则导致成功制造了通过 ROMP 制造的主链和侧链功能化聚(降冰片烯)。通过协同利用所有这些技术,我们在聚合物系统中在侧链、主链或两者中同时安装多个超分子基序,从而实现了工程正交性并实现了复杂性。基于功能 ROMP 引发剂和封端剂的设计原则的开发和修改导致了第一个主链杂 telechelic 聚合物的合成,该聚合物自组装成由正交氰尿酸-Hamilton 楔形和 SCS-Pd(II) 夹-吡啶基序组成的 A/B/C 超分子三嵌段聚合物。此外,通过结合功能化单体、ROMP 引发剂和封端剂,实现了超分子 A/B/A 三嵌段共聚物。迄今为止,这种通过 ROMP 制造的系统代表了提供带有正交基序的聚合物主链和侧链的唯一已知方法。最后,我们讨论了通过正交自组装获得功能材料的动力。总的来说,我们的研究表明,以明确和精确的方式结合共价和非共价键是实现复杂结构的关键设计要素。本账目中讨论的结果说明了在超分子系统中工程正交相互作用的精妙之处,并且被认为是朝着具有高精度和保真度的复杂仿生材料发展的重要步骤。