Manjili Hamidreza Kheiri, Ma'mani Leila, Naderi-Manesh Hossein
Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Drug Res (Stuttg). 2018 Sep;68(9):504-513. doi: 10.1055/a-0573-8966. Epub 2018 Apr 16.
Sulforaphane (SF) was loaded into the multi-functioned rattle-structured gold nanorod mesoporous silica nanoparticles core-shell to improve its stability and efficacy through its efficient delivery to tumors. The rattle-structured gold nanorod mesoporous silica nanoparticles (rattle-structured AuNR@mSiO core-shell NPs) were obtained by covering the surface of Au NPs with Ag and mSiO shell and subsequently selective Ag shell etching strategy. Then the surface of rattle-structured AuNR@mSiO NPs was decorated with thiolated polyethylene glycol-FITC and thiolated polyethylene glycol-folic acid to the designed form. The obtained FITC/FA@ [rattle-structured AuNR@mSiO] NPs was characterized by different techniques including energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM & TEM), UV-visible spectrophotometer and dynamic light scattering (DLS). The FITC/FA@ [rattle-structured AuNR@mSiO] NPs has an average diameter around ~33 nm, which increases to ~38 nm after the loading of sulforaphane. The amount of the loaded drug was ~ 2.8×10-4 mol of SF per gram of FITC/FA@ [rattle-structured AuNR@mSiO] NPs. The rattle-structured AuNR@mSiO and FITC/FA@ [rattle-structured AuNR@mSiO] NPs showed little inherent cytotoxicity, whereas the SF loaded FITC/FA@ [rattle-structured AuNR@mSiO] NPs was highly cytotoxic in the case of MCF-7 cell line. Finally, Fluorescence microscopy and flow cytometry were used to demonstrate that the nanoparticles could be accumulated in specific regions and SF loaded FITC/FA@ [FeO@Au] NPs efficiently induce apoptosis in MCF-7 cell line Graphical Abstract.
将萝卜硫素(SF)负载到具有多功能响尾蛇结构的金纳米棒介孔二氧化硅纳米颗粒核壳中,通过将其高效递送至肿瘤来提高其稳定性和疗效。通过用银和介孔二氧化硅壳覆盖金纳米颗粒表面,随后采用选择性银壳蚀刻策略,获得了响尾蛇结构的金纳米棒介孔二氧化硅纳米颗粒(响尾蛇结构的AuNR@mSiO核壳纳米颗粒)。然后,将硫醇化聚乙二醇 - 异硫氰酸荧光素(FITC)和硫醇化聚乙二醇 - 叶酸修饰到响尾蛇结构的AuNR@mSiO纳米颗粒表面,使其形成设计的形式。通过包括能量色散X射线光谱(EDX)、扫描和透射电子显微镜(SEM和TEM)、紫外可见分光光度计和动态光散射(DLS)在内的不同技术对所获得的FITC/FA@[响尾蛇结构的AuNR@mSiO]纳米颗粒进行表征。FITC/FA@[响尾蛇结构的AuNR@mSiO]纳米颗粒的平均直径约为33nm,负载萝卜硫素后增加到约38nm。每克FITC/FA@[响尾蛇结构的AuNR@mSiO]纳米颗粒负载的药物量约为2.8×10 - 4摩尔的SF。响尾蛇结构的AuNR@mSiO和FITC/FA@[响尾蛇结构的AuNR@mSiO]纳米颗粒显示出几乎没有内在细胞毒性,而负载SF的FITC/FA@[响尾蛇结构的AuNR@mSiO]纳米颗粒在MCF - 7细胞系中具有高度细胞毒性。最后,使用荧光显微镜和流式细胞术证明纳米颗粒可以在特定区域积累,并且负载SF的FITC/FA@[FeO@Au]纳米颗粒在MCF - 7细胞系中有效诱导凋亡。图形摘要