Institute of Earth Sciences, Heidelberg University, Im Neuenheimer Feld 236, Heidelberg, Germany.
Institut de Chimie de Clermont-Ferrand (ICCF), UMR6096 CNRS-UCA-Sigma, Clermont-Ferrand, France; Université de Strasbourg, CNRS, GMGM UMR 7156, Department of Microbiology, Genomics and the Environment, Strasbourg, France; UMR FARE, Université de Reims Champagne Ardenne, INRA, Reims, France.
Sci Total Environ. 2018 Sep 1;634:1278-1287. doi: 10.1016/j.scitotenv.2018.03.316. Epub 2018 Apr 18.
Chloromethane (CHCl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CHCl budget are approximate. The strength of the CHCl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CHCl. Their ability to degrade CHCl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CHCl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CHCl at rates from 2.1 to 17 and 0.3 to 0.9μggday for C. cooperi and D. filix-mas respectively, depending on CHCl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CHCl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CHCl, but produced it at rates ranging from 0.6 to 128μggday, with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CHCl biodegradation processes on plants play an important role in global cycling of atmospheric CHCl.
氯甲烷(CHCl)是大气中最丰富的卤代痕量气体。它在自然平流层臭氧破坏中起着重要作用。目前对全球 CHCl 预算的估计是近似的。微生物在土壤和植物中降解导致的 CHCl 全球汇的强度仍存在争议。一些植物,特别是蕨类植物,被认为是 CHCl 的大量排放源。它们降解 CHCl 的能力仍不确定。在这项研究中,我们通过测量其产生和消耗速率以及稳定的碳和氢同位素特征,研究了 3 种常见蕨类植物(Osmunda regalis、Cyathea cooperi、Dryopteris filix-mas)叶片产生和降解 CHCl 的潜力。研究中的蕨类植物能够以 2.1 到 17 和 0.3 到 0.9μg g-1 d-1 的速率降解 CHCl,具体取决于 CHCl 的补充和温度。剩余 CHCl 的稳定碳同位素富集因子为-39±13‰,而氢同位素分馏可以忽略不计(-8±19‰)。相比之下,O. regalis 不消耗 CHCl,但以 0.6 到 128μg g-1 d-1 的速率产生 CHCl,其稳定同位素值分别为碳-97±8‰和氢-202±10‰。尽管 3 种蕨类植物表现出明显不同的形成和消耗模式,但它们叶片相关的细菌多样性并没有明显不同。此外,我们没有在研究蕨类植物的微生物叶际中检测到与唯一已知的氯甲烷利用途径“cmu”相关的基因。我们的研究表明,植物上仍未知的 CHCl 生物降解过程在大气 CHCl 的全球循环中起着重要作用。