Ross James L, Andersen Peter F
Tetra Tech, Inc., 1165 Sanctuary Parkway, Alpharetta, GA, 30009.
Ground Water. 2018 Jul;56(4):571-579. doi: 10.1111/gwat.12786. Epub 2018 May 15.
The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot-North (TEAD-N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF-based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well-calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging-based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation.
卡尔曼滤波器是一种高效的数据同化工具,用于利用测量数据以及状态变量在空间和/或时间上的相关性来优化状态变量的估计值。集合卡尔曼滤波器(EnKF)(埃文森,2004年,2009年)是卡尔曼滤波器的一种变体,它采用蒙特卡罗分析来定义有助于优化更新状态的相关性。虽然EnKF在水文学中的应用有些有限,但它已成功应用于其他工程领域(例如,油藏建模、天气预报)。在此,基于犹他州图埃勒陆军仓库北区(TEAD-N)下方模拟的地下水四氯乙烯(TCE)羽流,利用含水层中TCE的观测数据,采用EnKF进行优化。对基于EnKF的同化羽流进行时间向前模拟,以预测未来羽流的迁移。支撑EnKF更新的相关性隐含地包含了在复杂场地水文和可变源历史影响下羽流随时间发展的信息,因为它们基于经过良好校准的数值地下水流和运移模型的多次实现。将EnKF方法与基于普通克里金法的同化方法在羽流浓度的准确表示方面进行比较,以确定EnKF在水质数据同化方面的相对有效性。