Suppr超能文献

完全耗尽的 Ti-Nb-Ta-Zr-O 纳米管:界面电荷动力学和太阳能制氢。

Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.

机构信息

Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan.

Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8503 , Japan.

出版信息

ACS Appl Mater Interfaces. 2018 Jul 11;10(27):22997-23008. doi: 10.1021/acsami.8b00727. Epub 2018 May 1.

Abstract

Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO, with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

摘要

在电极/电解质界面处空穴输运动力学性能较差被认为是 n 型 TiO 光电 极性能不佳的主要原因。通过采用纳米管作为电极骨架,可以实现光吸收和载流子收集的空间解耦,从而使具有短空穴扩散长度的 n 型 TiO 能够在光电化学 (PEC) 水分解过程中最大限度地利用可用的光生载流子。在这里,我们提出了一种精细的电化学阳极氧化工艺,用于制备四元 Ti-Nb-Ta-Zr-O 混合氧化物 (表示为 TNTZO) 纳米管阵列,并展示了它们在 PEC 水分解中的应用。使用时间分辨光致发光、电化学阻抗谱和开路电压衰减分析研究了电极的电荷转移动力学。数据表明,TNTZO 相对于原始 TiO 的优越光活性源于 Nd、Ta 和 Zr 元素的引入,这增加了可及的载流子数量,改变了电子结构,并提高了空穴注入动力学,从而加速了水分解。通过调节阳极氧化过程中使用的电解质的含水量,可以将生长的 TNTZO 纳米管的壁厚减小到小于耗尽层厚度的尺寸,实现载流子的完全耗尽状态,从而进一步提高 PEC 性能。氢气产生测试证明了 TNTZO 用于实现太阳能制氢的实际效果。此外,由于组成复杂性和完全耗尽的能带结构,本研究中的 TNTZO 纳米管阵列可能为负载其他半导体以构建复杂异质结构光电 极范例提供一种可行且通用的平台,在该范例中,光生载流子可以完全用于高效的太阳能-燃料转化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验