Suppr超能文献

用于加氢脱硫的 Ni-Mo-S 纳米颗粒的工程化。

Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization.

机构信息

Department of Physics , Technical University of Denmark , Fysikvej, Building 312 , DK-2800 Kongens Lyngby , Denmark.

Haldor Topsøe A/S , Haldor Topsøes Allé 1 , DK-2800 Kongens Lyngby , Denmark.

出版信息

Nano Lett. 2018 Jun 13;18(6):3454-3460. doi: 10.1021/acs.nanolett.8b00472. Epub 2018 May 2.

Abstract

Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a MoNi metal target in a reactive atmosphere of Ar and HS followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

摘要

用于催化应用的纳米颗粒工程既需要用于生产定义明确的纳米颗粒的合成技术,又需要对其催化性能进行测量。在本文中,我们提出了一种合理设计用于加氢脱硫(HDS)的高活性 Ni-Mo-S 纳米颗粒催化剂的新方法,即从化石燃料中去除硫。纳米颗粒催化剂通过在 Ar 和 HS 的反应气氛中溅射 MoNi 金属靶材,然后将溅射材料在气体中聚集成纳米颗粒来合成。通过四极质量过滤器过滤纳米颗粒,然后将其沉积在平面基底上,例如用于电子显微镜的网格或微反应器。通过改变沉积的纳米颗粒的质量,证明 Ni-Mo-S 纳米颗粒可以调制成类富勒烯颗粒、平躺的薄片和直立取向的薄片。纳米颗粒形态提供了不同数量的 Ni-Mo-S 边缘位,通常认为这些边缘位是催化上重要的位。使用微反应器系统,我们评估了 Ni-Mo-S 纳米颗粒对二苯并噻吩 HDS 的催化活性。测量结果表明,薄片的活性是类富勒烯颗粒的两倍,这表明 Ni-Mo-S 边缘对于 HDS 比基面更活跃。此外,薄片的直立取向的活性比类富勒烯颗粒高六倍,这表明边缘位数量和可及性对于加氢脱硫很重要,例如,对于反应分子的空间位阻。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验