Suppr超能文献

利用计算机生物信息学算法准确预测 PITX2 突变的功能、结构和稳定性变化。

Accurate prediction of functional, structural, and stability changes in PITX2 mutations using in silico bioinformatics algorithms.

机构信息

Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.

出版信息

PLoS One. 2018 Apr 17;13(4):e0195971. doi: 10.1371/journal.pone.0195971. eCollection 2018.

Abstract

Mutations in PITX2 have been implicated in several genetic disorders, particularly Axenfeld-Rieger syndrome. In order to determine the most reliable bioinformatics tools to assess the likely pathogenicity of PITX2 variants, the results of bioinformatics predictions were compared to the impact of variants on PITX2 structure and function. The MutPred, Provean, and PMUT bioinformatic tools were found to have the highest performance in predicting the pathogenicity effects of all 18 characterized missense variants in PITX2, all with sensitivity and specificity >93%. Applying these three programs to assess the likely pathogenicity of 13 previously uncharacterized PITX2 missense variants predicted 12/13 variants as deleterious, except A30V which was predicted as benign variant for all programs. Molecular modeling of the PITX2 homoedomain predicts that of the 31 known PITX2 variants, L54Q, F58L, V83F, V83L, W86C, W86S, and R91P alter PITX2's structure. In contrast, the remaining 24 variants are not predicted to change PITX2's structure. The results of molecular modeling, performed on all the PITX2 missense mutations located in the homeodomain, were compared with the findings of eight protein stability programs. CUPSAT was found to be the most reliable in predicting the effect of missense mutations on PITX2 stability. Our results showed that for PITX2, and likely other members of this homeodomain transcription factor family, MutPred, Provean, PMUT, molecular modeling, and CUPSAT can reliably be used to predict PITX2 missense variants pathogenicity.

摘要

PITX2 基因突变与多种遗传疾病有关,特别是 Axenfeld-Rieger 综合征。为了确定评估 PITX2 变异体潜在致病性最可靠的生物信息学工具,将生物信息学预测的结果与变异体对 PITX2 结构和功能的影响进行了比较。MutPred、Provean 和 PMUT 生物信息学工具在预测 PITX2 中 18 个特征性错义变异体的致病性效应方面表现出最高的性能,所有这些工具的敏感性和特异性均>93%。应用这三个程序来评估 13 个先前未表征的 PITX2 错义变异体的潜在致病性,预测 12/13 个变异体为有害变异体,除了所有程序均预测为良性变异体的 A30V。PITX2 同源域的分子建模预测,在 31 个已知的 PITX2 变异体中,L54Q、F58L、V83F、V83L、W86C、W86S 和 R91P 改变了 PITX2 的结构。相比之下,其余 24 个变异体不被预测会改变 PITX2 的结构。对位于同源域的所有 PITX2 错义突变进行的分子建模结果与 8 种蛋白质稳定性程序的结果进行了比较。发现 CUPSAT 是预测错义突变对 PITX2 稳定性影响最可靠的程序。我们的结果表明,对于 PITX2 以及可能其他同源域转录因子家族的成员,MutPred、Provean、PMUT、分子建模和 CUPSAT 可用于可靠地预测 PITX2 错义变异体的致病性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/735e/5903617/0df1c5bdaa3a/pone.0195971.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验