Yamada Michio, Akasaka Takeshi, Nagase Shigeru
Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo, 184-8501, Japan.
Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13394-13405. doi: 10.1002/anie.201713145. Epub 2018 Sep 11.
The awesome allotropy of carbon yields innumerable topologically possible cage structures of molecular carbon. This field is also related to endohedral metallofullerenes constructed by metal-atom encapsulation. Stable and soluble empty fullerenes and endohedral metallofullerenes are available in pure form in macroscopic amounts from carbon arc production or other physical processes followed by extraction and subsequent chromatographic separation. However, many other unidentified fullerene species, which must be reactive and insoluble in their pristine forms, remain in soot. These "missing" species must have extremely small HOMO-LUMO gaps and may have unconventional cage structures. Recent progress in this field has demonstrated that reactive fullerenes can be salvaged by exohedral derivatization, which can stabilize the reactive carbon cages. This concept provides a means of preparing macroscopic amounts of unconventional fullerenes as their derivatives.
碳惊人的同素异形性产生了无数拓扑学上可能的分子碳笼结构。该领域还与通过金属原子封装构建的内嵌金属富勒烯相关。通过碳弧生产或其他物理过程,随后进行萃取和后续色谱分离,可以以宏观量获得纯净形式的稳定且可溶的空富勒烯和内嵌金属富勒烯。然而,烟灰中仍存在许多其他未鉴定的富勒烯物种,它们在原始形式下必定具有反应性且不溶。这些“缺失”的物种必定具有极小的最高占据分子轨道-最低未占据分子轨道能隙,并且可能具有非常规的笼状结构。该领域的最新进展表明,反应性富勒烯可以通过外表面衍生化来挽救,这可以稳定反应性碳笼。这一概念提供了一种制备大量非常规富勒烯衍生物的方法。