Suppr超能文献

GoAmazon2014/5 项目的积分指向跨尺度深对流的深流入方法。

GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales.

机构信息

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095;

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109.

出版信息

Proc Natl Acad Sci U S A. 2018 May 1;115(18):4577-4582. doi: 10.1073/pnas.1719842115. Epub 2018 Apr 17.

Abstract

A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014-2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation-buoyancy relation across the tropics. Deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.

摘要

大量降水与中尺度对流系统(MCS)有关,而目前气候模型对其的描述还很不完善。对流参数化对卷入羽流模型的假设非常敏感,在该模型中,边界层的高等效位温空气通过湍流卷入得到修正。在这里,我们利用来自“绿色海洋亚马逊野外考察(2014-2015 年;GoAmazon2014/5)”的多仪器证据表明,根据雷达风廓线仪估计的垂直速度和质量通量对环境空气流入的经验约束加权,得出浮力测量值与降水统计值之间存在很强的关系。这种深层流入加权对于传统意义上的卷入没有自由参数,但在主要近似中,它只是流入的几何形状的一个表述。该结构进一步表明,即使对于热带海洋上 MCS 野外考察研究中注意到的连贯流入结构,这种加权也可以一致地应用。对于 GoAmazon2014/5 站点气候模型网格尺度上的雷达降水反演,深层流入混合导致降水概率和强度随浮力增加而急剧增加。此外,这适用于中尺度和更小尺度的对流。再分析和卫星数据的结果表明,这更为普遍:深层流入混合在整个热带地区产生了强烈的降水-浮力关系。因此,深层流入混合可以规避当前参数化的不足,同时有助于弥合在气候模型中代表中尺度对流的差距。

相似文献

9
Mesoscale convective clustering enhances tropical precipitation.中尺度对流群集增强热带降水。
Sci Adv. 2023 Jan 13;9(2):eabo5317. doi: 10.1126/sciadv.abo5317. Epub 2023 Jan 11.
10
On the sensitivity of the diurnal cycle in the Amazon to convective intensity.关于亚马逊地区昼夜循环对对流强度的敏感性。
J Geophys Res Atmos. 2016 Jul 27;121(14):8186-8208. doi: 10.1002/2016JD025039. Epub 2016 Jul 19.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验