Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
J Am Soc Mass Spectrom. 2019 Jan;30(1):118-127. doi: 10.1007/s13361-018-1951-9. Epub 2018 Apr 17.
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. Graphical abstract ᅟ.
天然质谱(MS)方法在学术和工业应用中的扩展,对分析大型天然 MS 数据集提出了巨大的需求。现有的软件工具不太适合高通量去卷积完整蛋白质和蛋白质复合物的天然电喷雾质谱。由于其速度和稳健性,UniDec 贝叶斯去卷积算法非常适合高通量分析,但之前是针对个别光谱进行调整的。在这里,我们针对大规模数据集的去卷积、分析和可视化对 UniDec 进行了优化。这个新的模块,MetaUniDec,以存储数据集的分层数据格式 5(HDF5)格式为中心,这显著提高了速度、可移植性和文件大小。它还包括代码优化以提高速度,以及用于可视化、交互和数据分析的新图形用户界面。为了演示 MetaUniDec 的实用性,我们将该软件应用于分析小型细菌血红素蛋白和大型脂蛋白纳米盘的自动碰撞电压斜坡。随着碰撞激活的增加,细菌血红素-一氧化氮/氧结合(H-NOX)蛋白显示出结合的血红素离散损失,而纳米盘显示出脂质和电荷的连续损失。通过使用 MetaUniDec 来跟踪峰面积或质量随碰撞电压的变化,我们探索了在超高质量范围轨道阱质谱仪中碰撞激活的能量分布。