Suppr超能文献

初级运动皮层中的运动分解。

Movement Decomposition in the Primary Motor Cortex.

机构信息

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.

出版信息

Cereb Cortex. 2019 Apr 1;29(4):1619-1633. doi: 10.1093/cercor/bhy060.

Abstract

A complex action can be described as the composition of a set of elementary movements. While both kinematic and dynamic elements have been proposed to compose complex actions, the structure of movement decomposition and its neural representation remain unknown. Here, we examined movement decomposition by modeling the temporal dynamics of neural populations in the primary motor cortex of macaque monkeys performing forelimb reaching movements. Using a hidden Markov model, we found that global transitions in the neural population activity are associated with a consistent segmentation of the behavioral output into acceleration and deceleration epochs with directional selectivity. Single cells exhibited modulation of firing rates between the kinematic epochs, with abrupt changes in spiking activity timed with the identified transitions. These results reveal distinct encoding of acceleration and deceleration phases at the level of M1, and point to a specific pattern of movement decomposition that arises from the underlying neural activity. A similar approach can be used to probe the structure of movement decomposition in different brain regions, possibly controlling different temporal scales, to reveal the hierarchical structure of movement composition.

摘要

一个复杂的动作可以被描述为一组基本动作的组合。虽然运动学和动力学元素都被提议来组成复杂的动作,但运动分解的结构及其神经表示仍然未知。在这里,我们通过对猕猴初级运动皮层中神经群体的时间动态进行建模来检查运动分解。使用隐马尔可夫模型,我们发现神经群体活动的全局跃迁与行为输出的一致分段有关,这些分段具有方向选择性。单个细胞在运动学时期之间表现出放电率的调制,其尖峰活动的突然变化与所确定的转变同步。这些结果揭示了 M1 水平上加速和减速阶段的明显编码,并指出了一种特定的运动分解模式,这种模式源于基础神经活动。类似的方法可以用于探测不同脑区运动分解的结构,可能控制不同的时间尺度,以揭示运动组成的层次结构。

相似文献

1
Movement Decomposition in the Primary Motor Cortex.
Cereb Cortex. 2019 Apr 1;29(4):1619-1633. doi: 10.1093/cercor/bhy060.
2
Mirror Neuron Populations Represent Sequences of Behavioral Epochs During Both Execution and Observation.
J Neurosci. 2018 May 2;38(18):4441-4455. doi: 10.1523/JNEUROSCI.3481-17.2018. Epub 2018 Apr 13.
3
Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
J Neurophysiol. 2024 Aug 1;132(2):433-445. doi: 10.1152/jn.00269.2023. Epub 2024 Jul 10.
5
Temporally Segmented Directionality in the Motor Cortex.
Cereb Cortex. 2018 Jul 1;28(7):2326-2339. doi: 10.1093/cercor/bhx133.
7
Neural population dynamics in motor cortex are different for reach and grasp.
Elife. 2020 Nov 17;9:e58848. doi: 10.7554/eLife.58848.
8
Decoding complete reach and grasp actions from local primary motor cortex populations.
J Neurosci. 2010 Jul 21;30(29):9659-69. doi: 10.1523/JNEUROSCI.5443-09.2010.
9
Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex.
J Neurophysiol. 1997 Mar;77(3):1171-94. doi: 10.1152/jn.1997.77.3.1171.
10
Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey.
Exp Brain Res. 2004 Oct;158(3):278-88. doi: 10.1007/s00221-004-1895-0. Epub 2004 Jul 29.

引用本文的文献

2
3
Hybrid Neural Network Models Explain Cortical Neuronal Activity During Volitional Movement.
bioRxiv. 2025 Feb 26:2025.02.20.636945. doi: 10.1101/2025.02.20.636945.
5
Similar neural states, but dissimilar decoding patterns for motor control in parietal cortex.
Netw Neurosci. 2024 Jul 1;8(2):486-516. doi: 10.1162/netn_a_00364. eCollection 2024.
6
Human arm redundancy: a new approach for the inverse kinematics problem.
R Soc Open Sci. 2024 Feb 28;11(2):231036. doi: 10.1098/rsos.231036. eCollection 2024 Feb.
8
Functional architecture of M1 cells encoding movement direction.
J Comput Neurosci. 2022 Aug;51(3):299-327. doi: 10.1007/s10827-023-00850-2. Epub 2023 Jun 7.
9
Toward a unifying framework for the modeling and identification of motor primitives.
Front Comput Neurosci. 2022 Sep 12;16:926345. doi: 10.3389/fncom.2022.926345. eCollection 2022.
10
The effect of limb position on a static knee extension task can be explained with a simple spinal cord circuit model.
J Neurophysiol. 2022 Jan 1;127(1):173-187. doi: 10.1152/jn.00208.2021. Epub 2021 Dec 8.

本文引用的文献

1
Temporally Segmented Directionality in the Motor Cortex.
Cereb Cortex. 2018 Jul 1;28(7):2326-2339. doi: 10.1093/cercor/bhx133.
2
Reorganization between preparatory and movement population responses in motor cortex.
Nat Commun. 2016 Oct 27;7:13239. doi: 10.1038/ncomms13239.
3
Corticomotoneuronal cells are "functionally tuned".
Science. 2015 Nov 6;350(6261):667-70. doi: 10.1126/science.aaa8035.
4
Representation of Muscle Synergies in the Primate Brain.
J Neurosci. 2015 Sep 16;35(37):12615-24. doi: 10.1523/JNEUROSCI.4302-14.2015.
5
Motor primitives--new data and future questions.
Curr Opin Neurobiol. 2015 Aug;33:156-65. doi: 10.1016/j.conb.2015.04.004. Epub 2015 Apr 22.
6
Modular deconstruction reveals the dynamical and physical building blocks of a locomotion motor program.
Neuron. 2015 Apr 8;86(1):304-18. doi: 10.1016/j.neuron.2015.03.005. Epub 2015 Mar 26.
7
Dimensionality reduction for large-scale neural recordings.
Nat Neurosci. 2014 Nov;17(11):1500-9. doi: 10.1038/nn.3776. Epub 2014 Aug 24.
8
A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation.
Neuron. 2014 Sep 3;83(5):1185-99. doi: 10.1016/j.neuron.2014.07.022. Epub 2014 Aug 14.
9
Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences.
Nat Neurosci. 2014 Mar;17(3):423-30. doi: 10.1038/nn.3632. Epub 2014 Jan 26.
10
Scale-invariant movement encoding in the human motor system.
Neuron. 2014 Jan 22;81(2):452-62. doi: 10.1016/j.neuron.2013.10.058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验