Department of Mathematics, University of Bologna, Piazza di Porta S. Donato 5, Bologna, BO, 40126, Italy.
Centre d'analyse et de mathématique sociales, Sorbonne Université, 54, boulevard Raspail, Paris, 75006, France.
J Comput Neurosci. 2022 Aug;51(3):299-327. doi: 10.1007/s10827-023-00850-2. Epub 2023 Jun 7.
In this paper we propose a neurogeometrical model of the behaviour of cells of the arm area of the primary motor cortex (M1). We will mathematically express as a fiber bundle the hypercolumnar organization of this cortical area, first modelled by Georgopoulos (Georgopoulos et al., 1982; Georgopoulos, 2015). On this structure, we will consider the selective tuning of M1 neurons of kinematic variables of positions and directions of movement. We will then extend this model to encode the notion of fragments introduced by Hatsopoulos et al. (2007) which describes the selectivity of neurons to movement direction varying in time. This leads to consider a higher dimensional geometrical structure where fragments are represented as integral curves. A comparison with the curves obtained through numerical simulations and experimental data will be presented. Moreover, neural activity shows coherent behaviours represented in terms of movement trajectories pointing to a specific pattern of movement decomposition Kadmon Harpaz et al. (2019). Here, we will recover this pattern through a spectral clustering algorithm in the subriemannian structure we introduced, and compare our results with the neurophysiological one of Kadmon Harpaz et al. (2019).
本文提出了一种主运动皮层(M1)臂区细胞行为的神经几何模型。我们将用数学方法表示这个皮质区域的超柱组织,该组织首先由 Georgopoulos 进行建模(Georgopoulos 等人,1982;Georgopoulos,2015)。在这个结构上,我们将考虑 M1 神经元对运动位置和方向的运动学变量的选择性调谐。然后,我们将把这个模型扩展到编码由 Hatsopoulos 等人引入的片段概念(2007),它描述了神经元对随时间变化的运动方向的选择性。这导致了考虑更高维的几何结构,其中片段被表示为积分曲线。我们将展示与通过数值模拟和实验数据获得的曲线的比较。此外,神经活动表现出一致的行为,这些行为可以用指向特定运动分解模式的运动轨迹来表示(Kadmon Harpaz 等人,2019)。在这里,我们将通过我们引入的次黎曼结构中的谱聚类算法来恢复这种模式,并将我们的结果与 Kadmon Harpaz 等人的神经生理学结果进行比较(2019)。