Bao Lei, Fritchman Joseph C
Department of Physics, The Ohio State University, Columbus, Ohio, USA.
Sci Rep. 2018 Apr 18;8(1):6177. doi: 10.1038/s41598-018-24570-1.
Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.
关于系统内部相互作用的信息对于建模系统动态至关重要。本研究考察了信息定义的更精细类别,并探讨了一种描述系统内部相互作用的局部信息的特征。基于这些结果,通过明确区分信息空间和物质空间,开发了一种双空间智能体与信息建模框架(AIM)。这两个空间既可以独立演化,也可以相互作用地演化。双空间框架可以为基于智能体的模型(ABM)提供新的分析方法。给出了三个例子,包括货币分配、个体经济演化和人工股票市场。在双空间中对结果进行了分析,这更清晰地展示了信息空间和物质空间内部以及它们之间的相互作用和演化。结果表明,使用双空间AIM对广泛的交互式和智能系统进行建模和分析具有广泛的适用性。