The Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, USA.
Org Biomol Chem. 2018 Jun 6;16(22):4090-4100. doi: 10.1039/c8ob00540k.
In a recent study [Science, 2015, 347, 6224], protein engineering was used to design a core within the enzyme threonyl-tRNA synthetase (ThrRS) capable of stabilizing the coplanar transition state conformation of an inserted noncanonical p-biphenylalanine (BiPhe) residue. Using the X-ray crystal structures of the preliminary (Protein Data Bank entries 4S02, 4S0J, 4S0L, 4S0I, and 4S0K) and final (PDB entry 4S03) ThrRS proteins, fully quantum mechanical (QM) cluster models were constructed and analyzed. Density functional theory and molecular dynamics computations were performed to investigate the energetic profiles of BiPhe dihedral rotation within the ThrRS models. For the 4S03 model, results indicate that steric and hydrophobic forces of the residues surrounding BiPhe eliminate the coplanar transition state entirely. Molecular dynamics simulations were carried out that confirmed the extent of BiPhe rotational flexibility, and provided additional information on barrier heights of full BiPhe rotation. Transition states of near-coplanar biphenyl rings of BiPhe were found for the 4S0I and 4S0K models, but are not likely persistent on any observable timescale. The dihedral angle of the biphenyl moiety is thermally allowed to fluctuate within the ThrRS protein core models by a range of 17°-26°. BiPhe-residue interaction counts (RICs) were used to compare the interaction differences among the different ThrRS cores. The RICs demonstrate how BiPhe is compacted within the 4S03 core, resulting in the experimentally observed "trapped" coplanar transition state analogue. This work presents a unique application of QM-cluster models towards studying the inner workings of proteins, and suggests avenues that computational chemistry can be used to further guide bioengineering.
在最近的一项研究中[Science, 2015, 347, 6224],通过蛋白质工程设计了酶苏氨酰-tRNA 合成酶(ThrRS)中的一个核心,使其能够稳定插入的非典型对二苯丙氨酸(BiPhe)残基的共面过渡态构象。利用初步(蛋白数据库条目 4S02、4S0J、4S0L、4S0I 和 4S0K)和最终(PDB 条目 4S03)ThrRS 蛋白的 X 射线晶体结构,构建并分析了完全量子力学(QM)簇模型。进行了密度泛函理论和分子动力学计算,以研究 BiPhe 二面角旋转在 ThrRS 模型中的能量分布。对于 4S03 模型,结果表明,BiPhe 周围残基的空间位阻和疏水力完全消除了共面过渡态。进行了分子动力学模拟,证实了 BiPhe 旋转灵活性的程度,并提供了有关 BiPhe 完全旋转的势垒高度的更多信息。在 4S0I 和 4S0K 模型中发现了 BiPhe 的近共面联苯环的过渡态,但在任何可观察的时间尺度上都不太可能持续存在。在 ThrRS 蛋白核心模型中,联苯部分的二面角在热允许范围内波动,范围为 17°-26°。使用 BiPhe-残基相互作用计数(RIC)比较了不同 ThrRS 核心之间的相互作用差异。RIC 表明 BiPhe 如何在 4S03 核心中被压缩,导致实验观察到的“捕获”共面过渡态类似物。这项工作展示了 QM 簇模型在研究蛋白质内部运作方面的独特应用,并提出了计算化学可以用于进一步指导生物工程的途径。