Suppr超能文献

采用顺序连接和切割的定制多聚蛋白。

Tailored Polyproteins Using Sequential Staple and Cut.

出版信息

Bioconjug Chem. 2018 May 16;29(5):1714-1719. doi: 10.1021/acs.bioconjchem.8b00163. Epub 2018 Apr 30.

Abstract

Polyproteins, individual protein units joined covalently in tandem, have evolved as a promising tool for measuring the dynamic folding of biomacromolecules in single-molecule force spectroscopy. However, the synthetic routes to prepare polyproteins have been a bottleneck, and urge development of in vitro methods to knit individual protein units covalently into polyprotein. Employing two enzymes of orthogonal functionalities periodically in sequence, we synthesized monodispersed polyproteins on a solid surface. We used Sortase A (SrtA), the enzyme known for sequence specific transpeptidation, to staple protein units covalently through peptide bonds. Exploiting the sequence-specific peptide cleaving ability of TEV protease, we controlled the progress of the reaction to one attachment at a time. Finally, with unique design of the unit proteins we control the orientation of proteins in polyprotein. This simple conjugation has the potential to staple proteins with different functionalities and from different expression systems, in any number in the polyprotein and, above all, via irreversible peptide bonds. Multiple chimeric constructs can also be synthesized with interchangeable protein units.

摘要

多聚蛋白是通过共价键串联在一起的单个蛋白质单元,已成为在单分子力谱中测量生物大分子动态折叠的一种很有前途的工具。然而,多聚蛋白的合成途径一直是一个瓶颈,因此迫切需要开发体外方法将单个蛋白质单元共价连接成多聚蛋白。我们采用两种具有正交功能的酶周期性地在序列中依次使用,在固体表面上合成了单分散的多聚蛋白。我们使用已知具有序列特异性转肽作用的 Sortase A(SrtA)通过肽键将蛋白质单元共价连接起来。利用 TEV 蛋白酶的序列特异性肽裂解能力,我们可以控制反应的进展,每次只进行一次连接。最后,通过对单元蛋白的独特设计,我们可以控制多聚蛋白中蛋白质的方向。这种简单的连接有可能将具有不同功能和不同表达系统的蛋白质以任意数量连接在多聚蛋白中,最重要的是通过不可逆的肽键连接。还可以通过可互换的蛋白质单元合成多种嵌合构建体。

相似文献

1
Tailored Polyproteins Using Sequential Staple and Cut.
Bioconjug Chem. 2018 May 16;29(5):1714-1719. doi: 10.1021/acs.bioconjchem.8b00163. Epub 2018 Apr 30.
2
Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations.
Chem Commun (Camb). 2020 Apr 11;56(28):3943-3946. doi: 10.1039/d0cc00714e. Epub 2020 Mar 20.
3
Discerning the catalytic mechanism of Staphylococcus aureus sortase A with QM/MM free energy calculations.
J Mol Graph Model. 2016 Jun;67:33-43. doi: 10.1016/j.jmgm.2016.04.006. Epub 2016 Apr 27.
5
Sequence variation in the β7-β8 loop of bacterial class A sortase enzymes alters substrate selectivity.
J Biol Chem. 2021 Aug;297(2):100981. doi: 10.1016/j.jbc.2021.100981. Epub 2021 Jul 22.
6
Overcoming the Limitations of Sortase with Proximity-Based Sortase-Mediated Ligation (PBSL).
Methods Mol Biol. 2019;2008:165-177. doi: 10.1007/978-1-4939-9537-0_13.
7
Single mutation on the surface of Staphylococcus aureus Sortase A can disrupt its dimerization.
Biochemistry. 2008 Feb 12;47(6):1667-74. doi: 10.1021/bi7014597. Epub 2008 Jan 15.
8
Sortase-based bio-organic strategies for macromolecular synthesis.
Chembiochem. 2014 Sep 5;15(13):1857-67. doi: 10.1002/cbic.201402013. Epub 2014 Aug 8.
10
Transpeptidation-Mediated Assembly of Tripartite Split Green Fluorescent Protein for Label-Free Assay of Sortase Activity.
Anal Chem. 2018 Mar 6;90(5):3245-3252. doi: 10.1021/acs.analchem.7b04756. Epub 2018 Feb 22.

引用本文的文献

1
Structural Basis of High-Precision Protein Ligation and Its Application.
J Am Chem Soc. 2025 Jan 15;147(2):1604-1611. doi: 10.1021/jacs.4c10689. Epub 2025 Jan 2.
2
Enzymatic Protein Immobilization on Amino-Functionalized Nanoparticles.
Molecules. 2023 Jan 2;28(1):379. doi: 10.3390/molecules28010379.
3
One-step asparaginyl endopeptidase (AEP1)-based protein immobilization for single-molecule force spectroscopy.
RSC Chem Biol. 2022 Aug 30;3(10):1276-1281. doi: 10.1039/d2cb00135g. eCollection 2022 Oct 5.
4
Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin.
Int J Mol Sci. 2022 Aug 30;23(17):9836. doi: 10.3390/ijms23179836.
5
Broadening the scope of sortagging.
RSC Adv. 2019 Feb 6;9(9):4700-4721. doi: 10.1039/c8ra06705h. eCollection 2019 Feb 5.
6
Designing Functional Bionanoconstructs for Effective Targeting.
Bioconjug Chem. 2022 Mar 16;33(3):429-443. doi: 10.1021/acs.bioconjchem.1c00546. Epub 2022 Feb 15.
7
Designed protein multimerization and polymerization for functionalization of proteins.
Biotechnol Lett. 2022 Mar;44(3):341-365. doi: 10.1007/s10529-021-03217-8. Epub 2022 Jan 27.
8
Facile Synthesis of Peptide-Conjugated Gold Nanoclusters with Different Lengths.
Nanomaterials (Basel). 2021 Nov 2;11(11):2932. doi: 10.3390/nano11112932.
9
Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes.
Front Mol Biosci. 2020 May 19;7:85. doi: 10.3389/fmolb.2020.00085. eCollection 2020.
10
Structural basis of the strong cell-cell junction formed by cadherin-23.
FEBS J. 2019 Nov 15;287(11):2328-47. doi: 10.1111/febs.15141.

本文引用的文献

1
Stable and Rapid Thiol Bioconjugation by Light-Triggered Thiomaleimide Ring Hydrolysis.
Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1885-1889. doi: 10.1002/anie.201609733. Epub 2017 Jan 12.
2
Transcription upregulation via force-induced direct stretching of chromatin.
Nat Mater. 2016 Dec;15(12):1287-1296. doi: 10.1038/nmat4729. Epub 2016 Aug 22.
3
The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding.
Rep Prog Phys. 2016 Jul;79(7):076601. doi: 10.1088/0034-4885/79/7/076601. Epub 2016 Jun 16.
5
Appreciating force and shape—the rise of mechanotransduction in cell biology.
Nat Rev Mol Cell Biol. 2014 Dec;15(12):825-33. doi: 10.1038/nrm3903. Epub 2014 Oct 30.
6
Mechanosensitive mechanisms in transcriptional regulation.
J Cell Sci. 2012 Jul 1;125(Pt 13):3061-73. doi: 10.1242/jcs.093005. Epub 2012 Jul 13.
7
Single molecule force spectroscopy using polyproteins.
Chem Soc Rev. 2012 Jul 21;41(14):4781-96. doi: 10.1039/c2cs35033e. Epub 2012 May 30.
10
Facile method of constructing polyproteins for single-molecule force spectroscopy studies.
Langmuir. 2011 May 17;27(10):5713-8. doi: 10.1021/la200915d. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验