Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
School of Physics, University of Electronic Science and Technology of China, Chengdu, China.
J Biophotonics. 2018 Sep;11(9):e201800067. doi: 10.1002/jbio.201800067. Epub 2018 May 11.
Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic-apparatus-compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2-dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm . Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion.
脑成像技术是认知神经科学中的一项重要技术。在本文中,我们设计了一种与立体定位仪兼容的光声显微镜,用于研究大鼠皮质血流动力学。与现有的光学分辨率光声显微镜(ORPAM)系统相比,该探头具有快速、轻便和微型化的特点。在该显微镜中,我们集成了一个中心频率为 10 MHz 的小型超声换能器来检测光声信号,以及一个二维(2D)微机电系统(MEMS)扫描仪来实现光学焦点的光栅扫描。基于体模评估,该成像探头具有 3.8 μm 的高横向分辨率和 2×2 mm 的有效成像区域。与传统的 ORPAMs 不同,结合标准立体定位仪可实现对啮齿动物大脑的广泛研究,而不会产生任何运动伪影。为了展示其性能,我们成功地捕获了毛细血管中的红细胞流动,监测了出血和输血过程中的血管变化,并可视化了大脑中动脉闭塞引起的皮质血流动力学变化。