Suppr超能文献

Synthesis and interaction with uridine phosphorylase of 5'-deoxy-4',5-difluorouridine, a new prodrug of 5-fluorouracil.

作者信息

Ajmera S, Bapat A R, Stephanian E, Danenberg P V

机构信息

Department of Biochemistry, University of Southern California School of Medicine, Los Angeles 90033.

出版信息

J Med Chem. 1988 Jun;31(6):1094-8. doi: 10.1021/jm00401a008.

Abstract

5'-Deoxy-4',5-difluorouridine (4'-F-5'-dFUrd) (10) has been synthesized on the basis of the rationale that the labilization of the glycosidic linkage caused by the 4'-fluoro substituent might allow this compound to be a better prodrug form of the anticancer drug 5-fluorouracil (FUra) than is the widely studied fluoropyrimidine 5'-deoxy-5-fluorouridine (5'-dFUrd). The rate of solvolytic hydrolysis of the glycosidic linkage of 4'-F-5'-dFUrd at pH 1 was about 500-fold faster than that of 5'-dFUrd. Since uridine phosphorylase is thought to be the enzyme that causes degradation of 5'-dFUrd in vivo to generate FUra, we compared the substrate interactions of 5'-dFUrd and 4'-F-5'-dUrd with this enzyme. The Vmax for hydrolysis of 4'-F-5'-dFUrd to FUra by uridine phosphorylase was about 5-fold greater than that of 5'-dFUrd, whereas the Km value of 4'-F-5'-dFUrd was 10-fold lower. The combination of these two factors results in 4'-F-5'-dFUrd having a 50-fold higher value of V/K than does 5'-dFUrd. Against L1210 cells in culture, the IC50 value for growth inhibition by 4'-F-5'-dFUrd was 3 X 10(-7) compared to 3 X 10(-6) for 5'-dFUrd.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验