Neural Network Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan.
Science. 2018 Apr 20;360(6386):313-317. doi: 10.1126/science.aar2866.
The neocortex exhibits a six-layered structure that is formed by radial migration of excitatory neurons, for which the multipolar-to-bipolar transition of immature migrating multipolar neurons is required. Here, we report that subplate neurons, one of the first neuron types born in the neocortex, manage the multipolar-to-bipolar transition of migrating neurons. By histochemical, imaging, and microarray analyses on the mouse embryonic cortex, we found that subplate neurons extend neurites toward the ventricular side of the subplate and form transient glutamatergic synapses on the multipolar neurons just below the subplate. NMDAR (-methyl-d-aspartate receptor)-mediated synaptic transmission from subplate neurons to multipolar neurons induces the multipolar-to-bipolar transition, leading to a change in migration mode from slow multipolar migration to faster radial glial-guided locomotion. Our data suggested that transient synapses formed on early immature neurons regulate radial migration.
新皮层表现出六层结构,这是由兴奋性神经元的放射状迁移形成的,其中不成熟的迁移多极神经元的多极-双极转换是必需的。在这里,我们报告说,基板神经元是新皮层中最早产生的神经元类型之一,它控制着迁移神经元的多极-双极转换。通过对小鼠胚胎皮层的组织化学、成像和微阵列分析,我们发现基板神经元向基板的脑室侧延伸神经突,并在基板下方的多极神经元上形成短暂的谷氨酸能突触。来自基板神经元的 NMDA 受体(-甲基-d-天冬氨酸受体)介导的突触传递诱导多极-双极转换,导致迁移模式从缓慢的多极迁移转变为更快的放射状胶质引导的运动。我们的数据表明,早期不成熟神经元上形成的短暂突触调节放射状迁移。