Baake Ellen, Cordero Fernando, Hummel Sebastian
Faculty of Technology, Bielefeld University, Box 100131, 33501, Bielefeld, Germany.
J Math Biol. 2018 Sep;77(3):795-820. doi: 10.1007/s00285-018-1228-8. Epub 2018 Apr 19.
We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (random) structures inherent in this deterministic model. In a first step, we obtain a representation of the deterministic equation's solution (and, in particular, of its equilibria) in terms of an ancestral process called the killed ancestral selection graph. This representation allows one to understand the bifurcations related to the error threshold phenomenon from a genealogical point of view. Next, we characterise the ancestral type distribution by means of the pruned lookdown ancestral selection graph and study its properties at equilibrium. We also provide an alternative characterisation in terms of a piecewise-deterministic Markov process. Throughout, emphasis is on the underlying dualities as well as on explicit results.
我们重新考虑具有两种类型的确定性单倍体突变选择方程。这是一个常微分方程,描述了无限大小种群中的类型分布(随时间向前)。本文建立了该确定性模型中固有的祖先(随机)结构。第一步,我们根据一个称为被杀祖先选择图的祖先过程,得到了确定性方程解(特别是其平衡点)的一种表示。这种表示使人们能够从谱系的角度理解与误差阈值现象相关的分岔。接下来,我们通过修剪后的俯视祖先选择图来刻画祖先类型分布,并研究其在平衡态的性质。我们还根据一个分段确定性马尔可夫过程提供了另一种刻画。自始至终,重点在于潜在的对偶性以及明确的结果。