Shi Honglue, Clay Mary C, Rangadurai Atul, Sathyamoorthy Bharathwaj, Case David A, Al-Hashimi Hashim M
Department of Chemistry, Duke University, Durham, NC, 27710, USA.
Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
J Biomol NMR. 2018 Apr;70(4):229-244. doi: 10.1007/s10858-018-0177-2. Epub 2018 Apr 19.
NMR relaxation dispersion studies indicate that in canonical duplex DNA, Watson-Crick base pairs (bps) exist in dynamic equilibrium with short-lived low abundance excited state Hoogsteen bps. N1-methylated adenine (mA) and guanine (mG) are naturally occurring forms of damage that stabilize Hoogsteen bps in duplex DNA. NMR dynamic ensembles of DNA duplexes with mA-T Hoogsteen bps reveal significant changes in sugar pucker and backbone angles in and around the Hoogsteen bp, as well as kinking of the duplex towards the major groove. Whether these structural changes also occur upon forming excited state Hoogsteen bps in unmodified duplexes remains to be established because prior relaxation dispersion probes provided limited information regarding the sugar-backbone conformation. Here, we demonstrate measurements of C3' and C4' spin relaxation in the rotating frame (R1ρ) in uniformly C/N labeled DNA as sensitive probes of the sugar-backbone conformation in DNA excited states. The chemical shifts, combined with structure-based predictions using an automated fragmentation quantum mechanics/molecular mechanics method, show that the dynamic ensemble of DNA duplexes containing mA-T Hoogsteen bps accurately model the excited state Hoogsteen conformation in two different sequence contexts. Formation of excited state A-T Hoogsteen bps is accompanied by changes in sugar-backbone conformation that allow the flipped syn adenine to form hydrogen-bonds with its partner thymine and this in turn results in overall kinking of the DNA toward the major groove. Results support the assignment of Hoogsteen bps as the excited state observed in canonical duplex DNA, provide an atomic view of DNA dynamics linked to formation of Hoogsteen bps, and lay the groundwork for a potentially general strategy for solving structures of nucleic acid excited states.
核磁共振弛豫色散研究表明,在标准双链DNA中,沃森-克里克碱基对(bps)与短寿命、低丰度的激发态 hoogsteen 碱基对处于动态平衡。N1-甲基腺嘌呤(mA)和鸟嘌呤(mG)是双链DNA中自然存在的损伤形式,可稳定 hoogsteen 碱基对。含有 mA-T hoogsteen 碱基对的DNA双链体的核磁共振动态集合揭示了 hoogsteen 碱基对及其周围糖环构象和主链角度的显著变化,以及双链体向大沟方向的扭结。在未修饰的双链体中形成激发态 hoogsteen 碱基对时是否也会发生这些结构变化仍有待确定,因为之前的弛豫色散探针提供的关于糖-主链构象的信息有限。在这里,我们展示了在均匀C/N标记的DNA中测量旋转坐标系(R1ρ)中的C3'和C4'自旋弛豫,作为DNA激发态中糖-主链构象的敏感探针。化学位移与使用自动碎片量子力学/分子力学方法基于结构的预测相结合,表明含有 mA-T hoogsteen 碱基对的DNA双链体的动态集合在两种不同的序列背景下准确模拟了激发态 hoogsteen 构象。激发态A-T hoogsteen碱基对的形成伴随着糖-主链构象的变化,使得翻转的顺式腺嘌呤与其配对胸腺嘧啶形成氢键,这反过来导致DNA整体向大沟方向扭结。结果支持将hoogsteen碱基对指定为在标准双链DNA中观察到的激发态,提供了与hoogsteen碱基对形成相关的DNA动力学的原子视图,并为解决核酸激发态结构的潜在通用策略奠定了基础。