Qiao Zhi, Sun Ning, Li Xiang, Xia Eryu, Zhao Shiwan, Qin Yong
IBM Research Lab - China.
Stud Health Technol Inform. 2018;247:111-115.
Emergency room(ER) visit prediction, especially whether visit ER or not and ER visit count, is crucial for hospitals to reasonably adapt resource allocation and` for patients to know future health state. Some existing studies have explored to use machine learning methods especially kinds of general linear model to settle down the task. But, in the clinical problems, there exist complex correlation between targets and features. Generally, liner model is difficult to model complex correlation to make better prediction. Hence, in this paper, we propose to use two non-linear models to settle the problem, which are XGBoost and Recurrent Neural Network. Experimental results show both methods have better performance.
急诊室就诊预测,特别是是否会去急诊室就诊以及急诊室就诊次数,对于医院合理调整资源分配以及患者了解未来健康状况至关重要。一些现有研究已探索使用机器学习方法,特别是各种广义线性模型来解决该任务。但是,在临床问题中,目标与特征之间存在复杂的相关性。一般来说,线性模型难以对复杂的相关性进行建模以做出更好的预测。因此,在本文中,我们建议使用两种非线性模型来解决该问题,即XGBoost和递归神经网络。实验结果表明这两种方法都具有更好的性能。