University of California San Francisco, San Francisco, California, USA
University of California San Francisco, San Francisco, California, USA.
Lupus Sci Med. 2024 May 20;11(1):e001170. doi: 10.1136/lupus-2024-001170.
Accurate identification of lupus nephritis (LN) cases is essential for patient management, research and public health initiatives. However, LN diagnosis codes in electronic health records (EHRs) are underused, hindering efficient identification. We investigated the current performance of International Classification of Diseases (ICD) codes, 9th and 10th editions (ICD9/10), for identifying prevalent LN, and developed scoring systems to increase identification of LN that are adaptable to settings with and without LN ICD codes.
Training and test sets derived from EHR data from a large health system. An external set comprised data from the EHR of a second large health system. Adults with ICD9/10 codes for SLE were included. LN cases were ascertained through manual chart reviews conducted by rheumatologists. Two definitions of LN were used: strict (definite LN) and inclusive (definite, potential or diagnostic uncertainty). Gradient boosting models including structured EHR fields were used for predictor selection. Two logistic regression-based scoring systems were developed ('LN-Code' included LN ICD codes and 'LN-No Code' did not), calibrated and validated using standard performance metrics.
A total of 4152 patients from University of California San Francisco Medical Center and 370 patients from Zuckerberg San Francisco General Hospital and Trauma Center met the eligibility criteria. Mean age was 50 years, 87% were female. LN diagnosis codes demonstrated low sensitivity (43-73%) but high specificity (92-97%). LN-Code achieved an area under the curve (AUC) of 0.93 and a sensitivity of 0.88 for identifying LN using the inclusive definition. LN-No Code reached an AUC of 0.91 and a sensitivity of 0.95 (0.97 for the strict definition). Both scoring systems had good external validity, calibration and performance across racial and ethnic groups.
This study quantified the underutilisation of LN diagnosis codes in EHRs and introduced two adaptable scoring systems to enhance LN identification. Further validation in diverse healthcare settings is essential to ensure their broader applicability.
准确识别狼疮肾炎(LN)病例对于患者管理、研究和公共卫生计划至关重要。然而,电子健康记录(EHR)中的 LN 诊断代码未得到充分利用,阻碍了高效识别。我们调查了国际疾病分类(ICD)第 9 版和第 10 版(ICD9/10)诊断代码目前用于识别现患 LN 的性能,并开发了评分系统,以提高在有和没有 LN ICD 代码的情况下识别 LN 的能力。
从大型医疗系统的 EHR 数据中提取训练集和测试集。外部集由来自第二大医疗系统 EHR 的数据组成。纳入有 ICD9/10 狼疮代码的成年人。通过风湿病学家进行的手动病历审查确定 LN 病例。使用两种 LN 定义:严格(明确 LN)和包含(明确、潜在或诊断不确定)。使用包括结构化 EHR 字段的梯度提升模型进行预测因子选择。使用两种基于逻辑回归的评分系统('LN-Code'包括 LN ICD 代码,'LN-No Code'不包括)进行开发、校准和验证,使用标准性能指标进行评估。
共纳入来自加利福尼亚大学旧金山医学中心的 4152 名患者和扎克伯格旧金山总医院和创伤中心的 370 名患者,符合入选标准。平均年龄为 50 岁,87%为女性。LN 诊断代码的敏感性(43-73%)较低,但特异性(92-97%)较高。使用包容性定义,LN-Code 的 AUC 为 0.93,敏感性为 0.88。LN-No Code 的 AUC 为 0.91,敏感性为 0.95(严格定义为 0.97)。两种评分系统在不同种族和族裔群体中均具有良好的外部有效性、校准和性能。
本研究量化了 EHR 中 LN 诊断代码的未充分利用,并引入了两种适应性评分系统以增强 LN 识别。在不同的医疗保健环境中进一步验证对于确保其更广泛的适用性至关重要。