Suppr超能文献

使用基于模型的递归划分方法在真实世界数据中检测治疗亚组相互作用:心肌梗死案例研究

Using Model-Based Recursive Partitioning for Treatment-Subgroup Interactions Detection in Real-World Data: A Myocardial Infarction Case Study.

作者信息

Chen Tiange, Li Xiang, Yang Jingang, Hu Jingyi, Xu Meilin, Qin Yong, Yang Yuejin

机构信息

IBM Research-China, Beijing, China.

Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, China.

出版信息

Stud Health Technol Inform. 2018;247:576-580.

Abstract

The effects of treatment often vary over subpopulations characterized by baseline patient features. Detection of such treatment-subgroup interaction is of central importance to precision medicine and personalized care. In this paper, we propose an analytical framework for treatment-subgroup interactions detection and treatment effectiveness heterogeneity evaluation in a real-world data setting. Model-based recursive partitioning analysis (MOB) is used for subgroup identification, filter-based confounder selection and multivariate logistic regression are used for confounding reduction and treatment effectiveness assessment. We illustrate this approach by a real-world case study that analyzes the effects of 15 drugs among patients with myocardial infarction (MI) using China Acute Myocardial Infarction (CAMI) registry data. The results show that our approach effectively identifies meaningful patient subgroups involved in treatment-subgroup interactions and thus can potentially aid decision making in personalized medicine.

摘要

治疗效果在以患者基线特征为特征的亚群中往往存在差异。检测这种治疗亚组相互作用对于精准医学和个性化医疗至关重要。在本文中,我们提出了一个分析框架,用于在真实世界数据环境中检测治疗亚组相互作用和评估治疗效果异质性。基于模型的递归划分分析(MOB)用于亚组识别,基于过滤的混杂因素选择和多变量逻辑回归用于减少混杂和评估治疗效果。我们通过一个真实世界的案例研究来说明这种方法,该研究使用中国急性心肌梗死(CAMI)登记数据,分析了15种药物对心肌梗死(MI)患者的影响。结果表明,我们的方法有效地识别了参与治疗亚组相互作用的有意义的患者亚组,因此有可能有助于个性化医疗中的决策制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验