Suppr超能文献

β-甘露聚糖酶催化合成烷基甘露寡糖。

β-Mannanase-catalyzed synthesis of alkyl mannooligosides.

机构信息

Department of Biochemistry and Structural Biology, Lund University, PO Box 124, S-221 00, Lund, Sweden.

Department of Biotechnology, Lund University, PO Box 124, S-221 00, Lund, Sweden.

出版信息

Appl Microbiol Biotechnol. 2018 Jun;102(12):5149-5163. doi: 10.1007/s00253-018-8997-2. Epub 2018 Apr 22.

Abstract

β-Mannanases catalyze the conversion and modification of β-mannans and may, in addition to hydrolysis, also be capable of transglycosylation which can result in enzymatic synthesis of novel glycoconjugates. Using alcohols as glycosyl acceptors (alcoholysis), β-mannanases can potentially be used to synthesize alkyl glycosides, biodegradable surfactants, from renewable β-mannans. In this paper, we investigate the synthesis of alkyl mannooligosides using glycoside hydrolase family 5 β-mannanases from the fungi Trichoderma reesei (TrMan5A and TrMan5A-R171K) and Aspergillus nidulans (AnMan5C). To evaluate β-mannanase alcoholysis capacity, a novel mass spectrometry-based method was developed that allows for relative comparison of the formation of alcoholysis products using different enzymes or reaction conditions. Differences in alcoholysis capacity and potential secondary hydrolysis of alkyl mannooligosides were observed when comparing alcoholysis catalyzed by the three β-mannanases using methanol or 1-hexanol as acceptor. Among the three β-mannanases studied, TrMan5A was the most efficient in producing hexyl mannooligosides with 1-hexanol as acceptor. Hexyl mannooligosides were synthesized using TrMan5A and purified using high-performance liquid chromatography. The data suggests a high selectivity of TrMan5A for 1-hexanol as acceptor over water. The synthesized hexyl mannooligosides were structurally characterized using nuclear magnetic resonance, with results in agreement with their predicted β-conformation. The surfactant properties of the synthesized hexyl mannooligosides were evaluated using tensiometry, showing that they have similar micelle-forming properties as commercially available hexyl glucosides. The present paper demonstrates the possibility of using β-mannanases for alkyl glycoside synthesis and increases the potential utilization of renewable β-mannans.

摘要

β-甘露聚糖酶催化β-甘露聚糖的转化和修饰,除了水解外,还可能具有转糖苷作用,从而导致新型糖缀合物的酶促合成。使用醇作为糖基受体(醇解),β-甘露聚糖酶可用于从可再生的β-甘露聚糖中合成烷基糖苷、可生物降解的表面活性剂。在本文中,我们研究了使用真菌里氏木霉(TrMan5A 和 TrMan5A-R171K)和aspergillus nidulans(AnMan5C)的糖苷水解酶家族 5β-甘露聚糖酶合成烷基甘露低聚糖。为了评估β-甘露聚糖酶的醇解能力,开发了一种新的基于质谱的方法,该方法允许使用不同的酶或反应条件对醇解产物的形成进行相对比较。当比较三种β-甘露聚糖酶催化甲醇或 1-己醇作为受体的醇解能力和潜在的烷基甘露低聚糖的二次水解时,观察到醇解能力和潜在的烷基甘露低聚糖的二次水解存在差异。在所研究的三种β-甘露聚糖酶中,TrMan5A 用 1-己醇作为受体时,生成己基甘露低聚糖的效率最高。使用 TrMan5A 合成己基甘露低聚糖,并使用高效液相色谱进行纯化。数据表明 TrMan5A 对 1-己醇作为受体的选择性高于水。使用核磁共振对合成的己基甘露低聚糖进行结构表征,结果与预测的β-构象一致。使用张力计评估合成的己基甘露低聚糖的表面活性剂性能,表明它们具有与市售己基葡萄糖苷相似的胶束形成特性。本文证明了使用β-甘露聚糖酶合成烷基糖苷的可能性,并增加了可再生β-甘露聚糖的潜在利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6740/5959982/e6e19341bbf3/253_2018_8997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验