Suppr超能文献

基于药物遗传学的曲线下面积模型可以预测晚期肾细胞癌个体患者使用阿昔替尼的疗效和不良事件。

Pharmacogenetics-based area-under-curve model can predict efficacy and adverse events from axitinib in individual patients with advanced renal cell carcinoma.

作者信息

Yamamoto Yoshiaki, Tsunedomi Ryouichi, Fujita Yusuke, Otori Toru, Ohba Mitsuyoshi, Kawai Yoshihisa, Hirata Hiroshi, Matsumoto Hiroaki, Haginaka Jun, Suzuki Shigeo, Dahiya Rajvir, Hamamoto Yoshihiko, Matsuyama Kenji, Hazama Shoichi, Nagano Hiroaki, Matsuyama Hideyasu

机构信息

Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan.

Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.

出版信息

Oncotarget. 2018 Mar 30;9(24):17160-17170. doi: 10.18632/oncotarget.24715.

Abstract

We investigated the relationship between axitinib pharmacogenetics and clinical efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a model to predict clinical efficacy and adverse events using pharmacokinetic and gene polymorphisms related to drug metabolism and efflux in a phase II trial. We prospectively evaluated the area under the plasma concentration-time curve (AUC) of axitinib, objective response rate, and adverse events in 44 consecutive advanced RCC patients treated with axitinib. To establish a model for predicting clinical efficacy and adverse events, polymorphisms in genes including ABC transporters ( and ), , and were analyzed by whole-exome sequencing, Sanger sequencing, and DNA microarray. To validate this prediction model, calculated AUC by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive patients prospectively. Actual AUC significantly correlated with the objective response rate ( = 0.0002) and adverse events (hand-foot syndrome, = 0.0055; and hypothyroidism, = 0.0381). Calculated AUC significantly correlated with actual AUC ( < 0.0001), and correctly predicted objective response rate ( = 0.0044) as well as adverse events ( = 0.0191 and 0.0082, respectively). In the validation study, calculated AUC prior to axitinib treatment precisely predicted actual AUC after axitinib treatment ( = 0.0066). Our pharmacogenetics-based AUC prediction model may determine the optimal initial dose of axitinib, and thus facilitate better treatment of patients with advanced RCC.

摘要

我们在晚期肾细胞癌(RCC)中研究了阿昔替尼药物遗传学与临床疗效/不良事件之间的关系,并在一项II期试验中建立了一个模型,该模型利用与药物代谢和外排相关的药代动力学和基因多态性来预测临床疗效和不良事件。我们前瞻性地评估了44例连续接受阿昔替尼治疗的晚期RCC患者的阿昔替尼血浆浓度-时间曲线下面积(AUC)、客观缓解率和不良事件。为了建立预测临床疗效和不良事件的模型,通过全外显子测序、桑格测序和DNA微阵列分析了包括ABC转运蛋白(和)、、和等基因的多态性。为了验证这个预测模型,将通过6个基因多态性计算得到的AUC与另外16例连续患者的实际AUC进行了前瞻性比较。实际AUC与客观缓解率(=0.0002)和不良事件(手足综合征,=0.0055;甲状腺功能减退,=0.0381)显著相关。计算得到的AUC与实际AUC显著相关(<0.0001),并正确预测了客观缓解率(=0.0044)以及不良事件(分别为=0.0191和0.0082)。在验证研究中,阿昔替尼治疗前计算得到的AUC精确预测了阿昔替尼治疗后的实际AUC(=0.0066)。我们基于药物遗传学的AUC预测模型可能会确定阿昔替尼的最佳初始剂量,从而有助于更好地治疗晚期RCC患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ad/5908314/57f09300598c/oncotarget-09-17160-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验