Ogle Molly E, Krieger Jack R, Tellier Liane E, McFaline-Figueroa Jennifer, Temenoff Johnna S, Botchwey Edward A
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States.
Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States.
ACS Biomater Sci Eng. 2018 Apr 9;4(4):1241-1250. doi: 10.1021/acsbiomaterials.6b00706. Epub 2017 Feb 20.
The immune response to biomaterial implants critically regulates functional outcomes such as vascularization, transplant integration/survival, and fibrosis. To create "immunologically smart" materials, the host-material response may be engineered to optimize the recruitment of pro-regenerative leukocyte subsets which mature into corresponding wound-healing macrophages. We have recently identified a unique feature of pro-regenerative Ly6C monocytes that is a higher expression of both the bioactive lipid receptor sphingosine-1-phosphate receptor 3 (S1PR3) and the stromal derived factor-1α (SDF-1α) receptor CXCR4. Therefore, we designed a bifunctional hydrogel to harnesses a mechanistic synergy between these signaling axes to enhance the recruitment of endogenous pro-regenerative monocytes. To overcome the challenge of codelivering two physiochemically distinct molecules-a large hydrophilic protein and hydrophobic small molecule-we engineered a dual affinity hydrogel that exploits the growth factor affinity of a heparin derivative (Hep) and lipid chaperone activity of albumin. The sphingosine analog FTY720 and SDF-1α are successfully loaded and coreleased from the Hep-functionalized PEG-DA hydrogels while maintaining bioactivity. Placement of these hydrogels into a murine partial thickness skin wound demonstrates that corelease of FTY720 and SDF-1α yields superior recruitment of myeloid cells to the implant interface compared to either factor alone. Although in vivo delivery of FTY720 or SDF-1α individually promotes the enhanced recruitment of Ly-6C anti-inflammatory monocytes, codelivery enhances the early accumulation and persistence of the differentiated wound healing CD206 macrophages in the tissue surrounding the gel. Co-delivery similarly promoted the synergistic expansion of vasculature adjacent to the implant, a key step in tissue healing. Taken together, these findings suggest that the combination of chemotactic molecules may provide additional maturation signals to the infiltrating leukocytes to facilitate macrophage transition and vascular network expansion, thus, ultimately, potentiating tissue repair. The coupling of multiple pro-regenerative biological cues provides a foundation for more fine-tuned immunoregenerative modulation to facilitate tissue repair.
对生物材料植入物的免疫反应关键地调节着诸如血管生成、移植整合/存活以及纤维化等功能结果。为了制造“免疫智能”材料,可以对宿主-材料反应进行设计,以优化促再生白细胞亚群的募集,这些亚群会成熟为相应的伤口愈合巨噬细胞。我们最近发现了促再生Ly6C单核细胞的一个独特特征,即生物活性脂质受体鞘氨醇-1-磷酸受体3(S1PR3)和基质衍生因子-1α(SDF-1α)受体CXCR4的表达均较高。因此,我们设计了一种双功能水凝胶,利用这些信号轴之间的机制协同作用来增强内源性促再生单核细胞的募集。为了克服同时递送两种物理化学性质不同的分子(一种大的亲水性蛋白质和一种疏水性小分子)的挑战,我们设计了一种双亲和水凝胶,它利用了肝素衍生物(Hep)的生长因子亲和力和白蛋白的脂质伴侣活性。鞘氨醇类似物FTY720和SDF-1α成功地负载到Hep功能化的PEG-DA水凝胶中并共同释放,同时保持生物活性。将这些水凝胶放置到小鼠的部分厚度皮肤伤口中表明,与单独使用任何一种因子相比,FTY720和SDF-1α的共同释放能使髓样细胞向植入物界面的募集更优。尽管单独在体内递送FTY720或SDF-1α可促进Ly-6C抗炎单核细胞的增强募集,但共同递送可增强凝胶周围组织中分化的伤口愈合CD206巨噬细胞的早期积累和持久性。共同递送同样促进了植入物附近血管的协同扩张,这是组织愈合的关键步骤。综上所述,这些发现表明趋化分子的组合可能为浸润的白细胞提供额外的成熟信号,以促进巨噬细胞转变和血管网络扩张,从而最终增强组织修复。多种促再生生物学线索的耦合为更精细的免疫再生调节以促进组织修复提供了基础。