Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States.
Biochemistry. 2018 May 22;57(20):2971-2983. doi: 10.1021/acs.biochem.8b00277. Epub 2018 May 4.
Understanding how oxidatively damaged RNA interacts with ribonucleases is important because of its proposed role in the development and progression of disease. Thus, understanding structural aspects of RNA containing lesions generated under oxidative stress, as well as its interactions with other biopolymers, is fundamental. We explored the reactivity of RNase A, RNase T, and RNase H toward oligonucleotides of RNA containing 8-oxo-7,8-dihydroguanosine (8oxoG). This is the first example that addresses this relationship and will be useful for understanding (1) how these RNases can be used to characterize the structural impact that this lesion has on RNA and (2) how oxidatively modified RNA may be handled intracellularly. 8-OxoG was incorporated into 10-16-mers of RNA, and its reactivity with each ribonuclease was assessed via electrophoretic analyses, circular dichroism, and the use of other C8-purine-modified analogues (8-bromoguanosine, 8-methoxyguanosine, and 8-oxoadenosine). RNase T does not recognize sites containing 8-oxoG, while RNase A recognizes and cleaves RNA at positions containing this lesion while differentiating if it is involved in H-bonding. The selectivity of RNase A followed the order C > 8-oxoG ≈ U. In addition, isothermal titration calorimetry showed that an 8-oxoG-C3'-methylphosphate derivative can inhibit RNase A activity. Cleavage patterns obtained from RNase H displayed changes in reactivity in a sequence- and concentration-dependent manner and displayed recognition at sites containing the modification in some cases. These data will aid in understanding how this modification affects reactivity with ribonucleases and will enable the characterization of global and local structural changes in oxidatively damaged RNA.
了解氧化损伤的 RNA 如何与核糖核酸酶相互作用很重要,因为它在疾病的发展和进展中具有潜在作用。因此,了解氧化应激下产生的含有损伤的 RNA 的结构方面及其与其他生物聚合物的相互作用是至关重要的。我们研究了核糖核酸酶 A、核糖核酸酶 T 和核糖核酸酶 H 对含有 8-氧代-7,8-二氢鸟苷(8oxoG)的寡核苷酸 RNA 的反应性。这是首次探讨这种关系的例子,对于理解(1)这些核糖核酸酶如何用于描述该损伤对 RNA 的结构影响,以及(2)氧化修饰的 RNA 如何在细胞内被处理,都将非常有用。将 8oxoG 掺入到 10-16 个核苷酸的 RNA 中,通过电泳分析、圆二色性分析以及使用其他 C8-嘌呤修饰类似物(8-溴鸟嘌呤、8-甲氧基鸟嘌呤和 8-氧代腺苷)评估每种核糖核酸酶对其的反应性。核糖核酸酶 T 不能识别含有 8-氧代鸟嘌呤的位点,而核糖核酸酶 A 则识别并切割含有该损伤的 RNA,同时区分其是否涉及氢键。核糖核酸酶 A 的选择性遵循 C > 8-oxoG ≈ U 的顺序。此外,等温滴定量热法显示,8-氧代鸟嘌呤-C3'-甲基磷酸酯衍生物可以抑制核糖核酸酶 A 的活性。核糖核酸酶 H 得到的切割模式显示出序列和浓度依赖性的反应性变化,并在某些情况下显示出对修饰位点的识别。这些数据将有助于了解这种修饰如何影响与核糖核酸酶的反应性,并能够对氧化损伤 RNA 的全局和局部结构变化进行特征描述。