Suppr超能文献

在输注血管紧张素II的载脂蛋白E基因敲除小鼠腹主动脉中,RANKL介导巨噬细胞向破骨细胞的分化。

RANKL-mediated osteoclastogenic differentiation of macrophages in the abdominal aorta of angiotensin II-infused apolipoprotein E knockout mice.

作者信息

Tanaka Teruyoshi, Kelly Matthew, Takei Yuichiro, Yamanouchi Dai

机构信息

Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisc; Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan.

Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisc.

出版信息

J Vasc Surg. 2018 Dec;68(6S):48S-59S.e1. doi: 10.1016/j.jvs.2017.11.091. Epub 2018 Apr 21.

Abstract

OBJECTIVE

Osteoclastogenic activation of macrophages (OCG) occurs in human abdominal aortic aneurysms (AAAs) and in calcium chloride-induced degenerative AAAs in mice, which have increased matrix metalloproteinase activity. As the activity of OCG in dissecting aneurysms is not clear, we tested the hypothesis that OCG contributes to angiotensin II (Ang II)-induced dissecting aneurysm (Ang II-induced AAA) in apolipoprotein E knockout mice.

METHODS

AAAs were produced in apolipoprotein E knockout mice via the administration of Ang II. Additionally, receptor activator of nuclear factor kB ligand (RANKL)-neutralizing antibody (5 mg/kg) was administered to one group of mice 7 days prior to Ang II infusion. Aneurysmal sections were probed for presence of RANKL and tartrate-resistant acid phosphatase via immunohistochemistry and immunofluorescence staining. Mouse aortas were also examined for RANKL and matrix metalloproteinase 9 expression via Western blot. In vitro murine vascular smooth muscle cells (MOVAS) and murine macrophages (RAW 264.7) were analyzed for the expression of osteogenic factors via Western blot, qPCR, and flow cytometry in response to Ang II or RANKL stimulation. The signaling pathway that mediates Ang II-induced RANKL expression in MOVAS cells was also investigated via application of TG101348, a Janus kinase 2 (JAK2) inhibitor, and Western blot analysis.

RESULTS

Immunohistochemical staining of Ang II-induced AAA sections revealed OCG as evidenced by increased RANKL and tartrate-resistant acid phosphatase expression compared with control mice. Immunofluorescence staining of AAA sections revealed co-localization of vascular smooth muscle cells and RANKL, revealing vascular smooth muscle cells as one potential source of RANKL. Systemic administration of RANKL-neutralizing antibody suppressed Ang II-induced AAA, with significant reduction of the maximum diameter of the abdominal aorta compared with vehicle controls (1.5 ± 0.4 mm vs 2.2 ± 0.2 mm). Ang II (1 μM) treatment induced a significant increase in RANKL messenger RNA expression levels in MOVAS cells compared with the vehicle control (1.0 ± 0.2 vs 2.8 ± 0.2). The activities of JAK2 and signal transducer and activator of transcription 5 (STAT5) were also significantly increased by Ang II treatment. Inhibition of JAK2/STAT5 suppressed Ang II-induced RANKL expression, suggesting the involvement of the JAK2/STAT5 signaling pathway.

CONCLUSIONS

OCG with increased RANKL expression was present in Ang II-induced AAA, and neutralization of RANKL suppressed AAA formation. As neutralization of RANKL has been used clinically to treat osteoporosis and other osteoclast-related diseases, additional study of the effectiveness of RANKL neutralization in AAA is warranted.

摘要

目的

巨噬细胞的破骨细胞生成性激活(OCG)发生在人类腹主动脉瘤(AAA)以及氯化钙诱导的小鼠退行性AAA中,这些疾病中基质金属蛋白酶活性增加。由于夹层动脉瘤中OCG的活性尚不清楚,我们检验了以下假设:OCG促成载脂蛋白E基因敲除小鼠中血管紧张素II(Ang II)诱导的夹层动脉瘤(Ang II诱导的AAA)形成。

方法

通过给予Ang II在载脂蛋白E基因敲除小鼠中诱导产生AAA。此外,在一组小鼠中,于输注Ang II前7天给予核因子κB受体活化因子配体(RANKL)中和抗体(5 mg/kg)。通过免疫组织化学和免疫荧光染色检测动脉瘤切片中RANKL和抗酒石酸酸性磷酸酶的存在情况。还通过蛋白质免疫印迹法检测小鼠主动脉中RANKL和基质金属蛋白酶9的表达。体外对小鼠血管平滑肌细胞(MOVAS)和小鼠巨噬细胞(RAW 264.7)进行蛋白质免疫印迹法、定量聚合酶链反应和流式细胞术分析,以检测其在Ang II或RANKL刺激下成骨因子的表达。还通过应用Janus激酶2(JAK2)抑制剂TG101348和蛋白质免疫印迹分析,研究介导Ang II诱导的MOVAS细胞中RANKL表达的信号通路。

结果

与对照小鼠相比,Ang II诱导的AAA切片的免疫组织化学染色显示OCG,表现为RANKL和抗酒石酸酸性磷酸酶表达增加。AAA切片的免疫荧光染色显示血管平滑肌细胞与RANKL共定位,表明血管平滑肌细胞是RANKL的一个潜在来源。全身给予RANKL中和抗体可抑制Ang II诱导的AAA,与载体对照组相比,腹主动脉最大直径显著减小(1.5±0.4 mm对2.2±0.2 mm)。与载体对照组相比,Ang II(1 μM)处理使MOVAS细胞中RANKL信使核糖核酸表达水平显著增加(1.0±0.2对2.8±0.2)。Ang II处理还使JAK2和信号转导及转录激活因子5(STAT5)的活性显著增加。抑制JAK2/STAT5可抑制Ang II诱导的RANKL表达,提示JAK2/STAT5信号通路参与其中。

结论

Ang II诱导的AAA中存在RANKL表达增加的OCG,中和RANKL可抑制AAA形成。由于中和RANKL已在临床上用于治疗骨质疏松症和其他破骨细胞相关疾病,因此有必要进一步研究中和RANKL在AAA中的有效性。

相似文献

2
Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice.
Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1587-97. doi: 10.1161/ATVBAHA.116.307530. Epub 2016 Jun 9.
3
Ursolic acid prevents angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice.
Atherosclerosis. 2018 Apr;271:128-135. doi: 10.1016/j.atherosclerosis.2018.02.022. Epub 2018 Feb 15.
5
Osteoclastogenic Differentiation of Macrophages in the Development of Abdominal Aortic Aneurysms.
Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1962-71. doi: 10.1161/ATVBAHA.116.307715. Epub 2016 Jul 7.
6
Gal-1 (Galectin-1) Upregulation Contributes to Abdominal Aortic Aneurysm Progression by Enhancing Vascular Inflammation.
Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):331-345. doi: 10.1161/ATVBAHA.120.315398. Epub 2020 Nov 5.
7
TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2102-2113. doi: 10.1161/ATVBAHA.117.309401. Epub 2017 Jul 20.
9
ATRQβ-001 Vaccine Prevents Experimental Abdominal Aortic Aneurysms.
J Am Heart Assoc. 2019 Sep 17;8(18):e012341. doi: 10.1161/JAHA.119.012341. Epub 2019 Sep 12.
10
Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice.
Atherosclerosis. 2020 Mar;297:16-24. doi: 10.1016/j.atherosclerosis.2020.01.029. Epub 2020 Feb 6.

引用本文的文献

1
Unpacking the Complexities of a Silent Killer.
Int J Mol Sci. 2023 Apr 12;24(8):7125. doi: 10.3390/ijms24087125.
2
Angiotensin II Induces Aortic Rupture and Dissection in Osteoprotegerin-Deficient Mice.
J Am Heart Assoc. 2022 Apr 19;11(8):e025336. doi: 10.1161/JAHA.122.025336. Epub 2022 Apr 12.
4
Smoking and the Pathophysiology of Peripheral Artery Disease.
Front Cardiovasc Med. 2021 Aug 27;8:704106. doi: 10.3389/fcvm.2021.704106. eCollection 2021.
5
Effects of the Local Bone Renin-Angiotensin System on Titanium-Particle-Induced Periprosthetic Osteolysis.
Front Pharmacol. 2021 Jun 24;12:684375. doi: 10.3389/fphar.2021.684375. eCollection 2021.
10
Osteoclast-Like Cells in Aneurysmal Disease Exhibit an Enhanced Proteolytic Phenotype.
Int J Mol Sci. 2019 Sep 21;20(19):4689. doi: 10.3390/ijms20194689.

本文引用的文献

1
Osteoclastogenic Differentiation of Macrophages in the Development of Abdominal Aortic Aneurysms.
Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1962-71. doi: 10.1161/ATVBAHA.116.307715. Epub 2016 Jul 7.
2
Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo.
Blood. 2014 Oct 9;124(15):e33-44. doi: 10.1182/blood-2014-04-568691. Epub 2014 Jul 16.
4
Current status of medical treatment for abdominal aortic aneurysm.
Circ J. 2013;77(12):2860-6. doi: 10.1253/circj.cj-13-1252. Epub 2013 Oct 26.
5
Vascular calcification: pathophysiology and clinical implications.
Einstein (Sao Paulo). 2013 Jul-Sep;11(3):376-82. doi: 10.1590/s1679-45082013000300021.
6
Aneurysmal disease: the abdominal aorta.
Surg Clin North Am. 2013 Aug;93(4):877-91, viii. doi: 10.1016/j.suc.2013.05.005. Epub 2013 Jul 3.
7
Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin-angiotensin system in vascular calcification.
Arterioscler Thromb Vasc Biol. 2013 Jun;33(6):1287-96. doi: 10.1161/ATVBAHA.112.301099. Epub 2013 Apr 11.
9
Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm.
Physiol Genomics. 2011 Sep 8;43(17):993-1003. doi: 10.1152/physiolgenomics.00044.2011. Epub 2011 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验