Suppr超能文献

TLR4 激动剂单磷酰脂质 A 通过动态重编程巨噬细胞代谢来广泛抵抗感染。

The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism.

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37212.

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235.

出版信息

J Immunol. 2018 Jun 1;200(11):3777-3789. doi: 10.4049/jimmunol.1800085. Epub 2018 Apr 23.

Abstract

Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with and that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.

摘要

单磷酰脂质 A(MPLA)是一种临床上使用的 TLR4 激动剂,已被发现可使感染产生长达 2 周的非特异性抵抗力。然而,赋予保护作用的分子机制尚不清楚。在这项研究中,我们发现 MPLA 通过诱导巨噬细胞中持续和动态的代谢程序来部分抵抗感染,从而支持改善病原体清除。用 MPLA 处理的小鼠对 和 感染的抵抗力增强,这与增强的微生物清除和器官保护有关。在 MPLA 处理后表现出增强的吞噬作用和呼吸爆发的组织巨噬细胞,是 MPLA 有益作用所必需的。对巨噬细胞表型的进一步分析表明,早期 TLR4 驱动的有氧糖酵解后来与线粒体生物发生、增强的苹果酸穿梭和增加的线粒体 ATP 产生偶联。这种代谢程序是由 MyD88 和 TRIF 依赖性信号通路以及下游 mTOR 激活的重叠和冗余贡献启动的。mTOR 信号通路的阻断抑制了代谢和功能巨噬细胞表型的发展,并在体内消除了 MPLA 诱导的抗感染能力。我们的发现表明,MPLA 驱动巨噬细胞代谢重编程,这种重编程在数天内演变,以支持在介导微生物清除方面非常有效的巨噬细胞表型,从而导致非特异性抗感染能力。

相似文献

1
The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism.
J Immunol. 2018 Jun 1;200(11):3777-3789. doi: 10.4049/jimmunol.1800085. Epub 2018 Apr 23.
2
MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages.
Front Immunol. 2022 Nov 11;13:1044662. doi: 10.3389/fimmu.2022.1044662. eCollection 2022.
3
Monophosphoryl lipid A induces protection against LPS in medullary thick ascending limb through induction of Tollip and negative regulation of IRAK-1.
Am J Physiol Renal Physiol. 2019 Sep 1;317(3):F705-F719. doi: 10.1152/ajprenal.00170.2019. Epub 2019 Jun 26.
4
The Toll-like receptor 4 agonist monophosphoryl lipid a augments innate host resistance to systemic bacterial infection.
Infect Immun. 2011 Sep;79(9):3576-87. doi: 10.1128/IAI.00022-11. Epub 2011 Jun 6.
5
Monophosphoryl lipid A induces protection against LPS in medullary thick ascending limb through a TLR4-TRIF-PI3K signaling pathway.
Am J Physiol Renal Physiol. 2017 Jul 1;313(1):F103-F115. doi: 10.1152/ajprenal.00064.2017. Epub 2017 Mar 29.
6
The role of MyD88- and TRIF-dependent signaling in monophosphoryl lipid A-induced expansion and recruitment of innate immunocytes.
J Leukoc Biol. 2016 Dec;100(6):1311-1322. doi: 10.1189/jlb.1A0216-072R. Epub 2016 Jun 27.
7
Inefficient TLR4/MD-2 heterotetramerization by monophosphoryl lipid A.
PLoS One. 2013 Apr 26;8(4):e62622. doi: 10.1371/journal.pone.0062622. Print 2013.
8
The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4.
Science. 2007 Jun 15;316(5831):1628-32. doi: 10.1126/science.1138963.
9
The vaccine adjuvant MPLA activates glycolytic metabolism in mouse mDC by a JNK-dependent activation of mTOR-signaling.
Mol Immunol. 2019 Feb;106:159-169. doi: 10.1016/j.molimm.2018.12.029. Epub 2019 Jan 9.
10
Monophosphoryl lipid A-induced pro-inflammatory cytokine expression does not require CD14 in primary human dendritic cells.
Inflamm Res. 2016 Jun;65(6):449-58. doi: 10.1007/s00011-016-0927-0. Epub 2016 Mar 18.

引用本文的文献

1
Toll-like receptors (TLRs) in the trained immunity era.
Elife. 2025 Sep 2;14:e106443. doi: 10.7554/eLife.106443.
3
Mitigating microplastic-induced organ Damage: Mechanistic insights from the microplastic-macrophage axes.
Redox Biol. 2025 Jul;84:103688. doi: 10.1016/j.redox.2025.103688. Epub 2025 May 19.
4
Metabolic adaptations driving innate immune memory: mechanisms and therapeutic implications.
J Leukoc Biol. 2025 May 7;117(5). doi: 10.1093/jleuko/qiaf037.
5
Trained immunity enhances host resistance to infection in aged mice.
J Leukoc Biol. 2025 Apr 23;117(4). doi: 10.1093/jleuko/qiae259.
7
Rationally designed Mycoplasma gallisepticum vaccine using a recombinant subunit approach.
NPJ Vaccines. 2024 Sep 28;9(1):178. doi: 10.1038/s41541-024-00978-x.
8
TIR domains of TLR family-from the cell culture to the protein sample for structural studies.
PLoS One. 2024 Jul 5;19(7):e0304997. doi: 10.1371/journal.pone.0304997. eCollection 2024.

本文引用的文献

1
Analysing high-throughput sequencing data in Python with HTSeq 2.0.
Bioinformatics. 2022 May 13;38(10):2943-2945. doi: 10.1093/bioinformatics/btac166.
2
The Cytokine Response to Lipopolysaccharide Does Not Predict the Host Response to Infection.
J Immunol. 2017 Apr 15;198(8):3264-3273. doi: 10.4049/jimmunol.1602106. Epub 2017 Mar 8.
3
Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity.
Cell Metab. 2016 Dec 13;24(6):807-819. doi: 10.1016/j.cmet.2016.10.008. Epub 2016 Nov 17.
4
β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.
Cell. 2016 Nov 17;167(5):1354-1368.e14. doi: 10.1016/j.cell.2016.09.034.
5
Multi-perspective quality control of Illumina RNA sequencing data analysis.
Brief Funct Genomics. 2017 Jul 1;16(4):194-204. doi: 10.1093/bfgp/elw035.
6
A guide to immunometabolism for immunologists.
Nat Rev Immunol. 2016 Sep;16(9):553-65. doi: 10.1038/nri.2016.70. Epub 2016 Jul 11.
7
The role of MyD88- and TRIF-dependent signaling in monophosphoryl lipid A-induced expansion and recruitment of innate immunocytes.
J Leukoc Biol. 2016 Dec;100(6):1311-1322. doi: 10.1189/jlb.1A0216-072R. Epub 2016 Jun 27.
8
Role of G-CSF in monophosphoryl lipid A-mediated augmentation of neutrophil functions after burn injury.
J Leukoc Biol. 2016 Apr;99(4):629-40. doi: 10.1189/jlb.4A0815-362R. Epub 2015 Nov 4.
10
Metabolic reprogramming in macrophages and dendritic cells in innate immunity.
Cell Res. 2015 Jul;25(7):771-84. doi: 10.1038/cr.2015.68. Epub 2015 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验