Suppr超能文献

半导体纳米晶体中的表面等离子体激元诱导载流子极化

Plasmon-induced carrier polarization in semiconductor nanocrystals.

作者信息

Yin Penghui, Tan Yi, Fang Hanbing, Hegde Manu, Radovanovic Pavle V

机构信息

Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.

出版信息

Nat Nanotechnol. 2018 Jun;13(6):463-467. doi: 10.1038/s41565-018-0096-0. Epub 2018 Apr 23.

Abstract

Spintronics and valleytronics are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped InO nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

摘要

自旋电子学和谷电子学是新兴的量子电子技术,它们分别依赖于利用电子自旋和能带结构的多个极值(谷)作为额外的自由度。半导体纳米结构中的电子还具有集体特性,有可能在多功能量子器件中得到利用。具体而言,等离子体半导体纳米晶体为等离子体与激子之间的无界面耦合提供了机会。然而,单相半导体纳米晶体中的等离子体 - 激子耦合仍然具有挑战性,因为受限的等离子体振荡通常与激子跃迁不共振。在这里,我们展示了简并掺杂的氧化铟纳米晶体中强大的电子极化,这是由回旋磁等离子体模式与费米能级处的激子的非共振耦合实现的。使用磁圆二色光谱,我们表明本征等离子体 - 激子耦合允许磁等离子体模式的间接激发,以及随后激子态的塞曼分裂。能带态的分裂和选择性载流子极化可以通过自旋 - 轨道耦合进一步操纵。我们的结果有效地开辟了等离子体电子学领域,该领域涉及由本征等离子体 - 激子和等离子体 - 自旋相互作用产生的现象。此外,在室温下很容易实现载流子极化的动态控制,这使我们能够在实际的光子、光电子和量子信息处理设备中将磁等离子体模式作为一个新的自由度加以利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验