Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
Analyst. 2018 May 15;143(10):2310-2322. doi: 10.1039/c8an00341f.
We report the shape- and wavelength-dependent ultrasensitive label-free detection of adenine on rhodium cube- and tripod-star-like nanoparticles (Rh NPs) using ultraviolet surface-enhanced Raman scattering (UV-SERS). Rh NPs immobilized on a silane-treated glass substrate probed at near-resonant and non-resonant wavelengths served as the SERS platform for the highly reproducible, stable, and real-time detection of adsorbed adenine molecules in the femtomolar region. The sensitivity of SERS-active Rh NPs displaying LSPR in the UV region was exploited for the 266 nm (DUV), 325 nm (UV) and 532 nm (visible) Raman excitation wavelengths. With the 266 nm and 325 nm DUV-UV excitation lines, for the Rh tripod geometry near or pre-resonant excitation being closer to the analyte absorption band combined with the intrinsic UV-LSPR resonant energy produced a SERS enhancement factor as high as 105 and accelerated photoinduced degradations compared to 532 nm for our substrates. Computational results consistent with the experiment clearly demonstrated that the NP SERS enhancement was sensitive to both the intrinsic optical properties of Rh in the UV region and the excitation closer to the LSPR peak producing larger EM enhancements. The wavelength-dependent correlations between the optical properties of the shape-tailored Rh NPs and SERS enhancements envisage the merit and demerit of DUV-UV excitation over visible excitation for Raman measurements. The as-fabricated SERS substrate could also be efficiently recycled using O2 plasma for the detection of other biomolecules. The use of oxide-free transition metal Rh and DUV-UV excitation thereby extends the improved generality of the SERS technique for ultrasensitive bimolecular detection and for gaining a comprehensive understanding of UV-SERS-based applications.
我们报告了使用紫外表面增强拉曼散射(UV-SERS)在铑立方体和三脚星状纳米粒子(Rh NPs)上对腺嘌呤进行形状和波长依赖性的超灵敏无标记检测。在近共振和非共振波长下探测固定在硅烷处理的玻璃衬底上的 Rh NPs 用作 SERS 平台,可在飞摩尔区域内高度重现、稳定和实时检测吸附的腺嘌呤分子。利用在 UV 区域显示局域表面等离子体共振(LSPR)的 SERS 活性 Rh NPs 的灵敏度,研究了 266nm(DUV)、325nm(UV)和 532nm(可见)拉曼激发波长。对于 Rh 三脚结构,在接近或预共振激发时,266nm 和 325nm DUV-UV 激发线更接近分析物吸收带,再加上固有 UV-LSPR 共振能量,产生高达 105 的 SERS 增强因子,并加速了与我们衬底相比,532nm 的光致降解。与实验一致的计算结果清楚地表明,NP SERS 增强对 Rh 在 UV 区域的固有光学性质以及更接近 LSPR 峰值的激发都很敏感,从而产生更大的 EM 增强。形状定制的 Rh NPs 的光学性质与 SERS 增强之间的波长相关关系设想了 DUV-UV 激发相对于可见激发在拉曼测量中的优点和缺点。所制造的 SERS 衬底也可以使用 O2 等离子体有效地回收,用于检测其他生物分子。无氧化物过渡金属 Rh 和 DUV-UV 激发的使用扩展了 SERS 技术在超灵敏双分子检测中的改进通用性,并为深入了解基于 UV-SERS 的应用提供了全面的理解。