Fazio Enza, Gökce Bilal, De Giacomo Alessandro, Meneghetti Moreno, Compagnini Giuseppe, Tommasini Matteo, Waag Friedrich, Lucotti Andrea, Zanchi Chiara Giuseppina, Ossi Paolo Maria, Dell'Aglio Marcella, D'Urso Luisa, Condorelli Marcello, Scardaci Vittorio, Biscaglia Francesca, Litti Lucio, Gobbo Marina, Gallo Giovanni, Santoro Marco, Trusso Sebastiano, Neri Fortunato
Department of Mathematical and Computational Sciences, Physics and Earth Physics, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy.
Department of Technical Chemistry I and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany.
Nanomaterials (Basel). 2020 Nov 23;10(11):2317. doi: 10.3390/nano10112317.
Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. In this work, we give an overview on the fundamentals of pulsed laser synthesis of nanocolloids and new information about its scalability towards selected applications. Biomedicine, catalysis and sensing are the application areas mainly discussed in this review, highlighting advantages of laser-synthesized nanoparticles for these types of applications and, once partially resolved, the limitations to the technique for large-scale applications.
激光合成作为一种合适的技术出现,可用于生产无配体纳米颗粒、合金以及用于催化、成像、生物医学、能源和环境应用的功能化纳米材料。在过去十年中,液体中的激光烧蚀和纳米颗粒生成已被证明是一种独特且高效的技术,能够以可扩展且清洁的方式生成、激发、破碎和共轭各种纳米结构。在这项工作中,我们概述了纳米胶体脉冲激光合成的基本原理以及有关其在选定应用方面可扩展性的新信息。生物医学、催化和传感是本综述主要讨论的应用领域,突出了激光合成纳米颗粒在这些类型应用中的优势,以及一旦部分解决后该技术在大规模应用方面的局限性。