Settle Amy E, Berstis Laura, Zhang Shuting, Rorrer Nicholas A, Hu Haiming, Richards Ryan M, Beckham Gregg T, Crowley Michael F, Vardon Derek R
National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA.
ChemSusChem. 2018 Jun 11;11(11):1768-1780. doi: 10.1002/cssc.201800606. Epub 2018 May 9.
cis,cis-Muconic acid is a platform bio-based chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations owing to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely because of solvent complexation with iodine. Under select conditions, ttDMM yields of 95 % were achieved in <1 h with methanol, followed by high purity recovery (>98 %) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for bio-based chemicals.
顺,顺式粘康酸是一种基于生物的平台化学品,可升级为直接可用的商品和新型单体。在可能的直接可用产品中,对苯二甲酸二甲酯可通过酯化、异构化、狄尔斯-阿尔德环加成和脱氢反应合成。顺,顺式粘康酸二甲酯(ccDMM)向反,反式异构体(ttDMM)的异构化反应可由碘催化;然而,研究尚未涉及(i)DMM特有的反应机理和反应势垒,以及(ii)溶剂的影响、催化剂循环利用的可能性和高纯度ttDMM的回收。为了填补这一空白,我们采用计算和实验相结合的方法来研究碘催化的DMM异构化反应。密度泛函理论计算表明,由于大量的卤素-二烯配位方案,存在独特的区域化学考虑因素。过渡态理论和实验均表明,光解离碘可显著降低反应势垒。溶剂的选择对快速反应动力学至关重要,这可能是由于溶剂与碘的络合作用。在特定条件下,以甲醇为溶剂,ttDMM在1小时内的产率可达95%,随后通过结晶可实现高纯度回收(>98%)。最后,反应后的碘可以回收并循环利用,活性损失最小。总体而言,这些发现为碘催化DMM异构化反应的机理和必要条件提供了新的见解,推动了生物基化学品领域的发展。