Suppr超能文献

水合依赖的木葡聚糖动力学模式:基于 C NMR 弛豫时间及其分布的分子动力学模拟

Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of C NMR Relaxation Times and Their Distributions.

机构信息

Wallenberg Wood Science Center , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden.

出版信息

Biomacromolecules. 2018 Jul 9;19(7):2567-2579. doi: 10.1021/acs.biomac.8b00191. Epub 2018 May 15.

Abstract

Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent C NMR longitudinal relaxation times ( T) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain-chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

摘要

生物体系中的大分子动力学在环境温度下对生物分子的功能和活性起着至关重要的作用,强烈依赖于水分含量。然而,基于聚合物及其吸附水的局部弛豫和扩散动力学的水合依赖现象的通用定量模型仍然缺失。在这项工作中,通过对水合木葡聚糖(XG)的分子动力学模拟计算了运动模式的原子尺度空间分布。结果表明,这些分布再现了实验中依赖于水合作用的室温 C NMR 纵向弛豫时间(T),以及它们的宽分布的相关特征,这表明聚合物局部各向异性的重取向动力学。在低水合度下,水的自扩散行为表明水分子被限制在随机聚集的 XG 网络中的特定位置,而平均聚合物链段的流动性仍然很低。随着含水量的增加,水合网络变得可移动且水分子可以完全进入,水合 XG 链段的运动变得更快。然而,即使在最高水合度下,聚合物网络仍保持异质凝胶状结构。我们表明,观察到的弛豫时间分布源于链流动性的空间异质性,而链流动性的空间异质性又是水-链和链-链相互作用的不均匀分布的结果。我们的发现有助于解释其他大分子如蛋白质、DNA 和合成聚合物中依赖于水合作用的动力学的情况,并对植物和植物基材料中多糖基质的力学性能具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验