Suppr超能文献

轻度创伤性脑损伤后持续性脑震荡后症状的预测。

Prediction of Persistent Post-Concussion Symptoms after Mild Traumatic Brain Injury.

机构信息

1 Center for Medical Decision Making , Department of Public Health, Erasmus MC, Rotterdam, the Netherlands .

2 Department of Neurology, University Medical Center Groningen , the Netherlands .

出版信息

J Neurotrauma. 2018 Nov 15;35(22):2691-2698. doi: 10.1089/neu.2017.5486. Epub 2018 Jul 23.

Abstract

Persistent post-concussion symptoms (PPCS) occur frequently after mild traumatic brain injury (mTBI). The identification of patients at risk for poor outcome remains challenging because valid prediction models are missing. The objectives of the current study were to assess the quality and clinical value of prediction models for PPCS and to develop a new model based on the synthesis of existing models and addition of complaints at the emergency department (ED). Patients with mTBI (Glasgow Coma Scale score 13-15) were recruited prospectively from three Dutch level I trauma centers between 2013 and 2015 in the UPFRONT study. PPCS were assessed using the Head Injury Severity Checklist at six months post-injury. Two prediction models (Stulemeijer 2008; Cnossen 2017) were examined for calibration and discrimination. The final model comprised variables of existing models with the addition of headache, nausea/vomiting, and neck pain at ED, using logistic regression and bootstrap validation. Overall, 591 patients (mean age 51years, 41% female) were included; PPCS developed in 241 (41%). Existing models performed poorly at external validation (area under the curve [AUC]: 0.57-0.64). The newly developed model included female sex (odds ratio [OR] 1.48, 95% confidence interval [CI] [1.01-2.18]), neck pain (OR 2.58, [1.39-4.78]), two-week post-concussion symptoms (OR 4.89, [3.19-7.49]) and two-week post-traumatic stress (OR 2.98, [1.88-4.73]) as significant predictors. Discrimination of this model was adequate (AUC after bootstrap validation: 0.75). Existing prediction models for PPCS perform poorly. A new model performs reasonably with predictive factors already discernible at ED warranting further external validation. Prediction research in mTBI should be improved by standardizing definitions and data collection and by using sound methodology.

摘要

持续性脑震荡后症状(PPCS)在轻度创伤性脑损伤(mTBI)后经常发生。由于缺乏有效的预测模型,因此仍然难以确定预后不良的患者。本研究的目的是评估 PPCS 预测模型的质量和临床价值,并基于现有模型的综合和急诊科(ED)投诉的增加来建立新模型。在 UPFRONT 研究中,前瞻性地从 2013 年至 2015 年,从荷兰 3 个 I 级创伤中心招募了 mTBI 患者(格拉斯哥昏迷量表评分 13-15)。使用头部损伤严重程度检查表在受伤后 6 个月评估 PPCS。检查了 Stulemeijer 2008 年和 Cnossen 2017 年两个预测模型的校准和区分度。最终模型包含了现有模型的变量,并用 ED 的头痛、恶心/呕吐和颈部疼痛进行了补充,使用逻辑回归和引导验证。共有 591 例患者(平均年龄 51 岁,41%为女性)被纳入;241 例(41%)发生 PPCS。现有模型在外部验证中表现不佳(曲线下面积 [AUC]:0.57-0.64)。新开发的模型包括女性(比值比 [OR] 1.48,95%置信区间 [CI] [1.01-2.18]),颈部疼痛(OR 2.58,[1.39-4.78]),脑震荡后两周症状(OR 4.89,[3.19-7.49])和创伤后两周应激(OR 2.98,[1.88-4.73])作为显著预测因素。该模型的区分度尚可(引导验证后的 AUC:0.75)。现有的 PPCS 预测模型表现不佳。一个具有预测因子的新模型表现合理,这些预测因子在 ED 已经可以识别,值得进一步进行外部验证。mTBI 的预测研究应通过标准化定义和数据收集以及使用可靠的方法来改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验