Suppr超能文献

LI-RADS v2017 用于肝脏结节:我们的阅读和报告方法。

LI-RADS v2017 for liver nodules: how we read and report.

机构信息

Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and St. Josef Krankenhaus, Vienna, Austria.

Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Cancer Imaging. 2018 Apr 24;18(1):14. doi: 10.1186/s40644-018-0149-5.

Abstract

The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of imaging examinations in patients at risk for hepatocellular carcinoma (HCC). For focal liver observations it assigns categories (LR-1 to 5, LR-M, LR-TIV), which reflect the relative probability of benignity or malignancy of the respective observation. The categories assigned are based on major and ancillary image features, which have been developed by the American College of Radiology (ACR) and validated in many studies. This review summarizes the relevant CT and MRI features and presents an image-guided approach for readers not familiar with LI-RADS on how to use the system. The widespread adoption of LI-RADS for reporting would help reduce inter-reader variability and improve communication among radiologists, hepatologists, hepatic surgeons and oncologists, thus leading to improved patient management.

摘要

肝脏影像报告和数据系统(LI-RADS)标准化了肝细胞癌(HCC)高危患者的影像学检查的解释和报告。对于局灶性肝脏观察,它分配类别(LR-1 至 5、LR-M、LR-TIV),反映了各自观察的良性或恶性的相对可能性。分配的类别基于主要和辅助图像特征,这些特征由美国放射学院(ACR)开发,并在许多研究中得到验证。这篇综述总结了相关的 CT 和 MRI 特征,并为不熟悉 LI-RADS 的读者提供了一种图像引导的方法,介绍如何使用该系统。广泛采用 LI-RADS 进行报告将有助于减少读者间的变异性,并改善放射科医生、肝病专家、肝外科医生和肿瘤学家之间的沟通,从而改善患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b91e/5978995/b98476ea07e3/40644_2018_149_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验